Question

In: Statistics and Probability

Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...

Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.

Solutions

Expert Solution

A regression analysis says whether the predicted variable changes with the dependent variable . In regression the analysis always direct to the evaluation of the R square , F test interpretation of beta variable and finally the regression equation .  

When the regression is conducted an F value and significance level of F value is calculated if the F value is statistically significant the model explains a significant amount of variance in the outcome variable . Regularly the value is significant when p<0.05 .Like this a R2 value is also calculated it can be indicated as the percent of variance in the outcome variable that is explained by a predicted variable . After these it is important to obtain the beta variable it can be negative or positive and have a t value . The beta variable is the degree of change of outcome variable for every 1 unit of change in prediction variables .If beta coefficient is negative then every 1 unit increase in the prediction variable the outcome variable will decrease by the beta value . Also if the beta coefficient is positive then every 1 unit increase in the prediction variable the outcome variable will increase by the beta coefficient value .

The P value for each term tests the null hypothesis that the coefficient is zero means no effect , a low P value indicate that you can reject the null hypothesis ,the P value give u an idea about which terms to keep in the regression model .R squared says how close the data are to the fitted regression line . If we get 0 % it says that model explain none of the variability of the response data around it's mean.  


Related Solutions

Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important. april 2019 150 - 200 words please, typed if possible
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important. In replies to peers, discuss whether you agree or disagree with the assessment provided by peers and explain why. using a refrence and in your own words can you answer the question. Not one that in your answers.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of...
Discuss the statistics that must be evaluated when reviewing the regression analysis output. Provide examples of what the values represent and an explanation of why they are important.
When reviewing the regression analysis output the statistics that must be evaluated the equation to describe...
When reviewing the regression analysis output the statistics that must be evaluated the equation to describe the statistical relationship between one or more predictor variables and the response variable. The p-value for each term tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (<0.05) indicates that you can reject the null hypothesis. An analyst that has a low p-value is likely to be a meaningful addition to your model because changes in the...
Given the following regression analysis output.
Given the following regression analysis output. a. What is the sample size?b. How many independent variables are in the study?c. Determine the coefficient of determination.d. Conduct a global test of hypothesis. Can you conclude at least one of the independent variables does not equal zero? Use the .01 significance level.e. Conduct an individual test of hypothesis on each of the independent variables. Would you consider dropping any of the independent variables? If so, which variable or variables would you drop?...
We give JMP output of regression analysis. Above output we give the regression model and the...
We give JMP output of regression analysis. Above output we give the regression model and the number of observations, n, used to perform the regression analysis under consideration. Using the model, sample size n, and output: Model: y = β0+ β1x1+ β2x2+ β3x3+ ε       Sample size: n = 30 Summary of Fit RSquare 0.956255 RSquare Adj 0.951207 Root Mean Square Error 0.240340 Mean of Response 8.382667 Observations (or Sum Wgts) 30 Analysis of Variance Source df Sum of Squares Mean Square...
We give JMP output of regression analysis. Above output we give the regression model and the...
We give JMP output of regression analysis. Above output we give the regression model and the number of observations, n, used to perform the regression analysis under consideration. Using the model, sample size n, and output: Model: y = β0 + β1x1 + β2x2 + β3x3 + ε       Sample size: n = 30 Summary of Fit RSquare 0.987331 RSquare Adj 0.985869 Root Mean Square Error 0.240749 Mean of Response 8.382667 Observations (or Sum Wgts) 30 Analysis of Variance Source df Sum...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT