Question

In: Advanced Math

Let V be the vector space of all functions f : R → R. Consider the...

Let V be the vector space of all functions f : R → R. Consider the subspace W spanned by {sin(x), cos(x), e^x , e^−x}. The function T : W → W given by taking the derivative is a linear transformation

a) B = {sin(x), cos(x), e^x , e^−x} is a basis for W. Find the matrix for T relative to B.

b)Find all the eigenvalues of the matrix you found in the previous part and describe their eigenvectors. (One of the factors of the characteristic polynomial will be λ 2+1. Just ignore this since it has imaginary roots)

d) Use your answer to the previous part to find all the eigenvalues of T and describe their eigenvectors. Check that the functions you found are indeed eigenvectors of T.

Solutions

Expert Solution


Related Solutions

(3) Let V be a vector space over a field F. Suppose that a ? F,...
(3) Let V be a vector space over a field F. Suppose that a ? F, v ? V and av = 0. Prove that a = 0 or v = 0. (4) Prove that for any field F, F is a vector space over F. (5) Prove that the set V = {a0 + a1x + a2x 2 + a3x 3 | a0, a1, a2, a3 ? R} of polynomials of degree ? 3 is a vector space over...
Let C(R) be the vector space of continuous functions from R to R with the usual...
Let C(R) be the vector space of continuous functions from R to R with the usual addition and scalar multiplication. Determine if W is a subspace of C(R). Show algebraically and explain your answers thoroughly. a. W = C^n(R) = { f ∈ C(R) | f has a continuous nth derivative} b. W = {f ∈ C^2(R) | f''(x) + f(x) = 0} c. W = {f ∈ C(R) | f(-x) = f(x)}.
(10pt) Let V and W be a vector space over R. Show that V × W...
(10pt) Let V and W be a vector space over R. Show that V × W together with (v0,w0)+(v1,w1)=(v0 +v1,w0 +w1) for v0,v1 ∈V, w0,w1 ∈W and λ·(v,w)=(λ·v,λ·w) for λ∈R, v∈V, w∈W is a vector space over R. (5pt)LetV beavectorspaceoverR,λ,μ∈R,andu,v∈V. Provethat (λ+μ)(u+v) = ((λu+λv)+μu)+μv. (In your proof, carefully refer which axioms of a vector space you use for every equality. Use brackets and refer to Axiom 2 if and when you change them.)
Proof: Let S ⊆ V be a subset of a vector space V over F. We...
Proof: Let S ⊆ V be a subset of a vector space V over F. We have that S is linearly dependent if and only if there exist vectors v1, v2, . . . , vn ∈ S such that vi is a linear combination of v1, v2, . . . , vi−1, vi+1, . . . , vn for some 1 ≤ i ≤ n.
6. Let V be the vector space above. Consider the maps T : V → V...
6. Let V be the vector space above. Consider the maps T : V → V And S : V → V defined by T(a1,a2,a3,...) = (a2,a3,a4,...) and S(a1,a2,a3,...) = (0,a1,a2,...). (a) [optional] Show that T and S are linear. (b) Show that T is surjective but not injective. (c) Show that S is injective but not surjective. (d) Show that V = im(T) + ker(T) but im(T) ∩ ker(T) ̸= {0}. (e) Show that im(S) ∩ ker(S) = {0}...
Let V be a finite dimensional vector space over R. If S is a set of...
Let V be a finite dimensional vector space over R. If S is a set of elements in V such that Span(S) = V , what is the relationship between S and the basis of V ?
Let V be a vector space and let U and W be subspaces of V ....
Let V be a vector space and let U and W be subspaces of V . Show that the sum U + W = {u + w : u ∈ U and w ∈ W} is a subspace of V .
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be...
Vector v=(9,0,2) is vector from R3 space. Consider standard inner product in R3. Let W be a subspace in R3 span by u = (9,2,0) and w=(9/2,0,2). a) Does V belong to W? show explanation b) find orthonormal basis in W. Show work c) find projection of v onto W( he best approximation of v with elements of w) d) find the distance between projection and vector v
Let V = R^2×2 be the vector space of 2-by-2 matrices with real entries over the...
Let V = R^2×2 be the vector space of 2-by-2 matrices with real entries over the scalar field R. We can define a function L on V by L : V is sent to V L = A maps to A^T , so that L is the “transpose operator.” The inner product of two matrices B in R^n×n and C in R^n×n is usually defined to be <B,C> := trace (BC^T) , and we will use this as our inner...
Let (V, ||·||) be a normed space, and W a dNormV,||·|| -closed vector subspace of V....
Let (V, ||·||) be a normed space, and W a dNormV,||·|| -closed vector subspace of V. (a) Prove that a function |||·||| : V /W → R≥0 can be consistently defined by ∀v ∈ V : |||v + W||| df= inf({||v + w|| : R≥0 | w ∈ W}). (b) Prove that |||·||| is a norm on V /W. (c) Prove that if (V, ||·||) is a Banach space, then so is (V /W, |||·|||)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT