Question

In: Advanced Math

(Modern Algebra) Show that if G is a finite group that has at most one subgroup...

(Modern Algebra) Show that if G is a finite group that has at most one subgroup for each
divisor of its order then G is cyclical.

Solutions

Expert Solution


Related Solutions

show that if H is a p sylow subgroup of a finite group G then for...
show that if H is a p sylow subgroup of a finite group G then for an arbitrary x in G x^-1 H x is also a p sylow subgroup of G
Let G be a finite group and H a subgroup of G. Let a be an...
Let G be a finite group and H a subgroup of G. Let a be an element of G and aH = {ah : h is an element of H} be a left coset of H. If b is an element of G as well and the intersection of aH bH is non-empty then aH and bH contain the same number of elements in G. Thus conclude that the number of elements in H, o(H), divides the number of elements...
Prove that if a finite group G has a unique subgroup of order m for each...
Prove that if a finite group G has a unique subgroup of order m for each divisor m of the order n of G then G is cyclic.
4.- Show the solution: a.- Let G be a group, H a subgroup of G and...
4.- Show the solution: a.- Let G be a group, H a subgroup of G and a∈G. Prove that the coset aH has the same number of elements as H. b.- Prove that if G is a finite group and a∈G, then |a| divides |G|. Moreover, if |G| is prime then G is cyclic. c.- Prove that every group is isomorphic to a group of permutations. SUBJECT: Abstract Algebra (18,19,20)
In a finite cyclic group, each subgroup has size dividing the size of the group. Conversely, given a positive divisor of the size of the group, there is a subgroup of that size
Prove that in a finite cyclic group, each subgroup has size dividing the size of the group. Conversely, given a positive divisor of the size of the group, there is a subgroup of that size.
Let P be a finite p-group. Show that Φ(P) is the unique normal subgroup of P...
Let P be a finite p-group. Show that Φ(P) is the unique normal subgroup of P minimal such that the corresponding factor group is elementry abelian
abstract algebra Let G be a finite abelian group of order n Prove that if d...
abstract algebra Let G be a finite abelian group of order n Prove that if d is a positive divisor of n, then G has a subgroup of order d.
Let N be a normal subgroup of the group G. (a) Show that every inner automorphism...
Let N be a normal subgroup of the group G. (a) Show that every inner automorphism of G defines an automorphism of N. (b) Give an example of a group G with a normal subgroup N and an automorphism of N that is not defined by an inner automorphism of G
Show that if F is a finite extension of Q, then the torsion subgroup of F*...
Show that if F is a finite extension of Q, then the torsion subgroup of F* is finite
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is...
Let (G,+) be an abelian group and U a subgroup of G. Prove that G is the direct product of U and V (where V a subgroup of G) if only if there is a homomorphism f : G → U with    f|U = IdU
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT