Question

In: Economics

Consider the utility function, U(x,y) = ln(x) + y. Please answer the following questions, showing all...

Consider the utility function, U(x,y) = ln(x) + y. Please answer the following questions, showing all work. (1) Derive an expression showing the overall effect of an increase in py on the quantity of y consumed, holding constant px and income (I). (2) Now, show how that overall effect in (1) can be decomposed into a separate substitution effect and income effect. Show these effects explicitly. (3) Now, do the same for x: derive an expression showing the overall effect of an increase in px on the quantity of x consumed, holding constant py and income (I). Explain why the decomposition of this overall effect into a substitution and income effect is comparatively simple.

Solutions

Expert Solution


Related Solutions

Write the demand functions for the following utility function: U = ln(x) + ln(y)
Write the demand functions for the following utility function: U = ln(x) + ln(y)
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y....
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y. Assume that Chepa has endowments (10, 10) and that Py = 10 throughout the problem. (h) This part of the question is to investigate Chepa’s welfare under different prices. We will do it step by step. (i) By substituting out the M with the expression of Chepa’s endowment income (see part (g)), obtain Chepa’s gross demands as functions of Px. (ii) Plug your answer...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x)...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x) + 3y. For this utility function MUx =1/x and MUy = 3. The price of x is px = 4 and the price of y is py = 2. The consumer has M units of income to spend on the two goods and wishes to maximize utility, given the budget. Draw the budget line for this consumer when M=50 and the budget line when...
Consider a farmer with utility function U(Y) = ln(Y), where Y is the farmer's income. Supposed...
Consider a farmer with utility function U(Y) = ln(Y), where Y is the farmer's income. Supposed the farmer believes there is a 50-50 chance that the next growing season will be abnormally rainy and he must choose which of two crops to plant: (1) wheat, which will produce an income of $28,000 in a normal year but only $10,000 in an abnormally rainy year, and (2) corn, which will produce $19,000 in a normal year but only $15,000 in an...
Which of the following utility functions is a Cobb-Douglas? Group of answer choices U(x,y) = ln(x)...
Which of the following utility functions is a Cobb-Douglas? Group of answer choices U(x,y) = ln(x) + 4y U(x,y) = 2x + 4y U(x,y) = ln(x) + 4ln(y) U(x,y) = min{x, 4y} None of the above
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy...
Jim’s utility function is U(x, y) = xy. Jerry’s utility function is U(x, y) = 1,000xy + 2,000. Tammy’s utility function is U(x, y) = xy(1 - xy). Oral’s utility function is -1/(10 + xy. Billy’s utility function is U(x, y) = x/y. Pat’s utility function is U(x, y) = -xy. a. No two of these people have the same preferences. b. They all have the same preferences except for Billy. c. Jim, Jerry, and Pat all have the same...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,...
Esther consumes goods X and Y, and her utility function is      U(X,Y)=XY+Y For this utility function,      MUX=Y      MUY=X+1 a. What is Esther's MRSXY? Y/(X + 1) X/Y (X + 1)/Y X/(Y + 1) b. Suppose her daily income is $20, the price of X is $4 per unit, and the price of Y is $1 per unit. What is her best choice?      Instructions: Enter your answers as whole numbers.      X =      Y =      What is Esther's utility when her...
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of...
Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of px = 1 and py = 2. Assuming that graphically good x is on the horizontal axis and good y is on the vertical axis, suppose the consumer chooses to consume 5 units of good x and 13 units of good y. What is the marginal rate of substitution (MRS) equal to?
Consider the following utility functions: (i) u(x,y) = x2y (ii) u(x,y) = max{x,y} (iii) u(x,y) =...
Consider the following utility functions: (i) u(x,y) = x2y (ii) u(x,y) = max{x,y} (iii) u(x,y) = √x + y (a) For each example, with prices px = 2 and py = 4 find the expenditure minimising bundle to achieve utility level of 10. (b) Verify, in each case, that if you use the expenditure minimizing amount as income and face the same prices, then the expenditure minimizing bundle will maximize your utility.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT