Question

In: Economics

Which of the following utility functions is a Cobb-Douglas? Group of answer choices U(x,y) = ln(x)...

Which of the following utility functions is a Cobb-Douglas?

Group of answer choices

U(x,y) = ln(x) + 4y

U(x,y) = 2x + 4y

U(x,y) = ln(x) + 4ln(y)

U(x,y) = min{x, 4y}

None of the above

Solutions

Expert Solution

The Cobb-Douglas production function is a particular form of the production function. The basic form of the Cobb-Douglas production function is:

Q(L,K) = A L^aK^b

The returns to scale is measured by the sum of exponents of Cobb-Douglas production function i.e., a + b .

Cobb-Douglas production function can be extended by including more than two factors. For example, agricultural production is not only dependent on labour and capital used but also on the use of other inputs such as land, fertilizers, irrigation. Including these inputs in the Cobb-Douglas function .

Here all examples are either of perfect substitute or minimum function , so neither of them represents the cobb douglas production function .

Hence (E) part is a correct answer


Related Solutions

Write the demand functions for the following utility function: U = ln(x) + ln(y)
Write the demand functions for the following utility function: U = ln(x) + ln(y)
Assume a Cobb-douglas utility function of 2 goods x and y given by U = x...
Assume a Cobb-douglas utility function of 2 goods x and y given by U = x 0.5y 0.5 and an initial income I of 100. Let initial price be px = 4 and py = 1. Now vary the price of x from 1 to 7 in steps of 1. So you have 7 prices for x. px = {1, 2, 3, 4, 5, 6, 7} For each of these px, py REMAINS the SAME at 1. In the excel...
Consider the following Cobb-Douglas utility function: U(x,y) = 10 + 22xy, where x denotes the quantity...
Consider the following Cobb-Douglas utility function: U(x,y) = 10 + 22xy, where x denotes the quantity of apples and y denotes the quantity of pears. Income is m; the price for one apple is px and the price for one pear is py. b) By applying the Lagrangian method, derive the optimal demands for apples and pears. c) What is the impact of an increase in the price of apples on the optimal demand for pears? What is the impact...
Substitution and Income Effect (Calculation) Suppose that the consumer's utility function is Cobb-Douglas U(x; y) =...
Substitution and Income Effect (Calculation) Suppose that the consumer's utility function is Cobb-Douglas U(x; y) = xy. She initially has $100 income and the prices that she faces are px = py = $2: a. Compute her demands for x and y. b. Now suppose that px decreases to $1 while py remains unchanged. Compute her new demands for x and y. c. What is the total (price) effect on the consumption of x? d. What is the substitution effect...
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y....
Chepa’s utility function is given by U (x, y) = ln x + 4 ln y. Assume that Chepa has endowments (10, 10) and that Py = 10 throughout the problem. (h) This part of the question is to investigate Chepa’s welfare under different prices. We will do it step by step. (i) By substituting out the M with the expression of Chepa’s endowment income (see part (g)), obtain Chepa’s gross demands as functions of Px. (ii) Plug your answer...
Consider the utility function, U(x,y) = ln(x) + y. Please answer the following questions, showing all...
Consider the utility function, U(x,y) = ln(x) + y. Please answer the following questions, showing all work. (1) Derive an expression showing the overall effect of an increase in py on the quantity of y consumed, holding constant px and income (I). (2) Now, show how that overall effect in (1) can be decomposed into a separate substitution effect and income effect. Show these effects explicitly. (3) Now, do the same for x: derive an expression showing the overall effect...
Consider the following utility functions: (i) u(x,y) = x2y (ii) u(x,y) = max{x,y} (iii) u(x,y) =...
Consider the following utility functions: (i) u(x,y) = x2y (ii) u(x,y) = max{x,y} (iii) u(x,y) = √x + y (a) For each example, with prices px = 2 and py = 4 find the expenditure minimising bundle to achieve utility level of 10. (b) Verify, in each case, that if you use the expenditure minimizing amount as income and face the same prices, then the expenditure minimizing bundle will maximize your utility.
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x)...
A consumer purchases two goods, x and y and has utility function U(x; y) = ln(x) + 3y. For this utility function MUx =1/x and MUy = 3. The price of x is px = 4 and the price of y is py = 2. The consumer has M units of income to spend on the two goods and wishes to maximize utility, given the budget. Draw the budget line for this consumer when M=50 and the budget line when...
III. A common utility function used to illustrate economic examples is the Cobb-Douglas function where U(X,...
III. A common utility function used to illustrate economic examples is the Cobb-Douglas function where U(X, Y)= XαYβ, where α and β are decimal exponents that sum to 1.0 (for example, 0.3 and 0.7). a. For this utility function, the MRS is given by MRS = MUX=MUY = αY/βX. Use this fact together with the utility-maximizing condition (and that α+ β =1) to show that this person will spend the fraction of his other income on good X and the...
. Which of the following utility functions satisfy (i) strict convexity; (ii) monotonicity: (a) U(x, y)...
. Which of the following utility functions satisfy (i) strict convexity; (ii) monotonicity: (a) U(x, y) = min[x, y]; (b) U(x, y) = x^a*y^(1−a); (c) U(x, y) = x + y; (d) Lexicographic preference. (e) U(x, y) = y
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT