Question

In: Economics

Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of...

Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of px = 1 and py = 2. Assuming that graphically good x is on the horizontal axis and good y is on the vertical axis, suppose the consumer chooses to consume 5 units of good x and 13 units of good y. What is the marginal rate of substitution (MRS) equal to?

Solutions

Expert Solution

MRS = MUx/MUy

U = 10X + 2Y

MUx = 10

MUy = 2

MRS = 10/2

= 5


Related Solutions

Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px...
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px = $5 and Py =$5. Assuming that graphically good X is on the horizontal axis and good Y is on the vertical axis, suppose the consumer chooses to consume 7 units of good X and 15 units of good Y. Then the marginal rate of substitution6 is equal to: MRS = . (Enter your response rounded to two decimal places. Do not forget to...
For one purpose, the utility function of the consumer is u(x,y)=4?x+2y for maximum utility. 1. For...
For one purpose, the utility function of the consumer is u(x,y)=4?x+2y for maximum utility. 1. For one purpose, the customer's income is I, and the price of X is Px and the price of Y is Py. Obtain the demand function of this person's Y ash through Px, Py, I. 2. For one purpose, the consumer has an income I = 40, and initially the price of Px=1, and the price is Py=1. (1) What is the difference between the...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
a consumer has a utility function u = x^1/2y^1/2. prices are px = 2 and py...
a consumer has a utility function u = x^1/2y^1/2. prices are px = 2 and py = 3. she maximizes utility purchasing 6 units of good x. her income is equal to m = ________
Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices...
Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices ($2,$1) and her income is $12. If prices change to ($3,$1) then the compensating variation Select one: a. There is not enough information to determine which variation is greater. b. is $2 more than the equivalent variation. c. is $1 less than the equivalent variation. d. equals the equivalent variation. e. is $1 more than the equivalent variation.
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x and y are the quantities of the good X and good Y consumed, respectively. The consumer's income is 400. (a) What is the demanded bundle when the price of good X is 10 and the price of good Y is 10? (b) Redo part (a) when the price of good X is doubled? (c) Redo part (a) when the price of good Y is...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40 euros, the price per unit of good X (i.e. Px ) is 5 euros and the price per unit of good Y (i.e. Py) is 1 euro. a) What is the marginal utility of good X (MUx) for the consumer? b) What is the marginal utility of good Y (MUy) for the consumer? How do I calculate these?
Jane’s utility function is U(x, y) = x + 2y, where x is her consumption of...
Jane’s utility function is U(x, y) = x + 2y, where x is her consumption of good X and y is her consumption of good Y. Her income is $2. The price of Y is $2. The cost per unit of X depends on how many units she buys. The total cost of x units of X is the square root of x. The bundle ( 1 4, 3 4 ) is Jane’ s utility maximizing choice, given her budget....
Welfare Measures Consider a consumer with utility function of the form u(x,y) = √xy. Where x...
Welfare Measures Consider a consumer with utility function of the form u(x,y) = √xy. Where x is the number of hamburgers and y the number of soft drinks. (a) Find the compensated demands. (b) Calculate the Compensated Variation (CV) when the price of soft drinks increase from $1 to $4. (Assume that the utility at the original price level is equal to 2 and the price of hamburgers is equal to $4) (c) Is the consumer better-off or worse-off after...
Suppose a consumer has a utility function given by u(x, y) = x + y, so...
Suppose a consumer has a utility function given by u(x, y) = x + y, so that the two goods are perfect substitutes. Use the Lagrangian method to fully characterize the solution to max(x,y) u(x, y) s.t. x + py ≤ m, x ≥ 0, y ≥ 0, where m > 0 and p < 1. Evaluate and interpret each of the multipliers in this case. What happens to your solution when p > 1? What about when p =...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT