Question

In: Economics

Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of...

Consider the following utility function: U(x, y) = 10x + 2y. A consumer faces prices of px = 1 and py = 2. Assuming that graphically good x is on the horizontal axis and good y is on the vertical axis, suppose the consumer chooses to consume 5 units of good x and 13 units of good y. What is the marginal rate of substitution (MRS) equal to?

Solutions

Expert Solution

MRS = MUx/MUy

U = 10X + 2Y

MUx = 10

MUy = 2

MRS = 10/2

= 5


Related Solutions

Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px...
Consider the following utility function: U = 100X0.10 Y 0.75. A consumer faces prices of Px = $5 and Py =$5. Assuming that graphically good X is on the horizontal axis and good Y is on the vertical axis, suppose the consumer chooses to consume 7 units of good X and 15 units of good Y. Then the marginal rate of substitution6 is equal to: MRS = . (Enter your response rounded to two decimal places. Do not forget to...
For one purpose, the utility function of the consumer is u(x,y)=4?x+2y for maximum utility. 1. For...
For one purpose, the utility function of the consumer is u(x,y)=4?x+2y for maximum utility. 1. For one purpose, the customer's income is I, and the price of X is Px and the price of Y is Py. Obtain the demand function of this person's Y ash through Px, Py, I. 2. For one purpose, the consumer has an income I = 40, and initially the price of Px=1, and the price is Py=1. (1) What is the difference between the...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has...
Consider a consumer with the utility function U(X, Y) = X^2 Y^2 . This consumer has an income denoted by I which is devoted to goods X and Y. The prices of goods X and Y are denoted PX and PY. a. Find the consumer’s marginal utility of X (MUX) and marginal utility of Y (MUY). b. Find the consumer’s marginal rate of substitution (MRS). c. Derive the consumer's demand equations for both goods as functions of the variables PX,...
a consumer has a utility function u = x^1/2y^1/2. prices are px = 2 and py...
a consumer has a utility function u = x^1/2y^1/2. prices are px = 2 and py = 3. she maximizes utility purchasing 6 units of good x. her income is equal to m = ________
Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices...
Brianna’s preferences can be represented by the utility function u(x,y) = min{x,y}. Initially she faces prices ($2,$1) and her income is $12. If prices change to ($3,$1) then the compensating variation Select one: a. There is not enough information to determine which variation is greater. b. is $2 more than the equivalent variation. c. is $1 less than the equivalent variation. d. equals the equivalent variation. e. is $1 more than the equivalent variation.
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x...
Suppose that the utility function of a consumer is U(x,y) = x ¼y ¾, where x and y are the quantities of the good X and good Y consumed, respectively. The consumer's income is 400. (a) What is the demanded bundle when the price of good X is 10 and the price of good Y is 10? (b) Redo part (a) when the price of good X is doubled? (c) Redo part (a) when the price of good Y is...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX =...
Suppose a consumer has preferences represented by the utility function U(X,Y) = MIN[X,2Y]. Suppose PX = 1 and PY = 2. Draw the Income Consumption Curve for this consumer for income values M = 100, M = 200, and M = 300. Your graph should accurately draw the budget constraints for each income level and specifically label the bundles that the consumer chooses for each income level. Also, for each bundle that the consumer chooses, draw the indifference curve that...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40...
1. Consumer’s utility function is: U (X,Y) = 10X + Y. Consumer’s income M is 40 euros, the price per unit of good X (i.e. Px ) is 5 euros and the price per unit of good Y (i.e. Py) is 1 euro. a) What is the marginal utility of good X (MUx) for the consumer? b) What is the marginal utility of good Y (MUy) for the consumer? How do I calculate these?
Jane’s utility function is U(x, y) = x + 2y, where x is her consumption of...
Jane’s utility function is U(x, y) = x + 2y, where x is her consumption of good X and y is her consumption of good Y. Her income is $2. The price of Y is $2. The cost per unit of X depends on how many units she buys. The total cost of x units of X is the square root of x. The bundle ( 1 4, 3 4 ) is Jane’ s utility maximizing choice, given her budget....
Welfare Measures Consider a consumer with utility function of the form u(x,y) = √xy. Where x...
Welfare Measures Consider a consumer with utility function of the form u(x,y) = √xy. Where x is the number of hamburgers and y the number of soft drinks. (a) Find the compensated demands. (b) Calculate the Compensated Variation (CV) when the price of soft drinks increase from $1 to $4. (Assume that the utility at the original price level is equal to 2 and the price of hamburgers is equal to $4) (c) Is the consumer better-off or worse-off after...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT