Question

In: Chemistry

Consider the reaction 2KHSO3(s) ⇌ K2SO3(s) + H2O(g) + SO2(g) at equilibrium. What happens to the...

Consider the reaction 2KHSO3(s) ⇌ K2SO3(s) + H2O(g) + SO2(g) at equilibrium. What happens to the partial pressure of H2O(g) if the volume of the reaction flask is doubled? (increases, decreases, nothing)

Solutions

Expert Solution

Le Chatelier’s Principle:

According to this principle, whenever an equilibrium system is subjected to change, certain processes takes place which have a tendency to partially neutralize the initial change, which result in bringing the system to a new position of equilibrium. This principle mainly explains three different equilibrium changes:

  1. Equilibrium change due to change in the concentration
  1. Equilibrium change due to change in the volume or pressure
  1. Equilibrium change due to change in the temperature

Equilibrium change due to change in the concentration:

Changing the concentration of a species will shift the equilibrium that side which would reduce that change in concentration.

Equilibrium change to change in the volume or pressure:

According to this law a change in the volume of an equilibrium system that one or more gases changes the concentration of those gases.

If equilibrium of gaseous of molecules is condensed than the pressure of equilibrium is increased. This increased pressure will be partially relieved by a shift of equilibrium in the less gaseous molecules.

If equilibrium of gaseous of molecules is expanded than the pressure of equilibrium is decreased. This decreased pressure will be partially restored by a shift of equilibrium in the more gaseous molecules.

The reaction:

2KHSO3(s) ⇌ K2SO3(s) + H2O(g) + SO2(g)

there are 2 mol of solids forming 1 mol of solid + 2 mol of gases

if we double the volume, the Pressure of the system will DECREASE

Therefore, the gas formation can be allowed... that is, more PRODUCTS will form due to the decrease in pressure


Related Solutions

Consider the following equilibrium for the exothermic reaction: 2NaHSO3(s) <=> Na2SO3(s) +H2O(g) +SO2(g) How will the...
Consider the following equilibrium for the exothermic reaction: 2NaHSO3(s) <=> Na2SO3(s) +H2O(g) +SO2(g) How will the equilibrium shift when each of the following changes are made separately? Answer with shift towards products, shift towards reactants or no shift. Provide a reason for your choice. a.) Adding H2O to the reaction vessel: b.) Adding Helium to the reaction vessel: c.) Removing Na2SO3: d.) Increasing the volume of the reaction vessel: e.) Increasing the temperature of the reaction vessel:
Consider the equilibrium Na2O(s) + SO2(g) ⇌ Na2SO3(s). (a) Write the equilibrium-constant expression for this reaction in terms of partial pressures.
Consider the equilibrium Na2O(s) + SO2(g) ⇌ Na2SO3(s).(a) Write the equilibrium-constant expression for this reaction in terms of partial pressures.(b) All the compounds in this reaction are soluble in water. Rewrite the equilibrium-constant expression in terms of molarities for the aqueous reaction.  
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If...
Consider the following equilibrium. CS2(g) + 3 O2(g) equilibrium reaction arrow CO2(g) + 2 SO2(g) If the reaction is started in a container with 5.59 atm CS2 and 13.3 atm O2, what is Kp if the partial pressure of CO2 is 3.76 atm at equilibrium? (There is no change in temperature and the initial partial pressures of the products are equal to 0.)
Consider the following system at equilibrium. S(s)+O2(g)<--->SO2(g) 1. How will adding more S(s) shift the equilibrium?...
Consider the following system at equilibrium. S(s)+O2(g)<--->SO2(g) 1. How will adding more S(s) shift the equilibrium? A) to the right B) to the left C) no effect 2. How will removing some SO2(g) shift the equilibrium? A) to the right B) to the left C) no effect 3. How will decreasing the volume of the container shift the equilibrium? A) to the right B) to the left C) no effect
Consider the reaction at 298 K SO2(g) + 2H2S(g) ? 3S(s) + 2H2O (g) The ?G
Consider the reaction at 298 K SO2(g) + 2H2S(g) ? 3S(s) + 2H2O (g) The ?G
Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌...
Consider the following reaction with an equilibrium constant of 5.10 at 527oC. CO(g) + H2O(g) ⇌ H2(g) + CO2(g) If [CO] = 0.150 M, [H2O] = 0.250 M, [H2] = 0.420 M, and [CO2] = 0.370 M, calculate Q. ? Consider the following reaction: 2SO2(g) + O2(g) ⇌ 2SO3(g) Which of the following would not result in a shift towards an increase in production of SO3?pick the correct answer? a)Increase in volume b)Decrease in volume c)Increase in the amount of...
Consider the following reaction at 0ºC: S(s) + 4NO(g) ↔ SO2(g) + 2N2O(g). A student places...
Consider the following reaction at 0ºC: S(s) + 4NO(g) ↔ SO2(g) + 2N2O(g). A student places 0.025 moles of solid sulfur and 0.100 moles of nitrogen monoxide gas in a closed 1.00 L container at 0ºC for several days. Calculate the number of molecules of NO in the 1.00L container after equilibrium is reached, given the following thermodynamic data: S(s)                NO(g)              SO2(g)             N2O(g) 31.9                 211                 256                   220   Sº (J K-1 mol-1) 0.00                 90.4                -297                   81.6 ΔHºf(kJ mol-1) My...
Consider the unbalanced reaction NiS2(s) + O2(g) --> NiO(s) + SO2(g). When 11.2g of NiS2 react...
Consider the unbalanced reaction NiS2(s) + O2(g) --> NiO(s) + SO2(g). When 11.2g of NiS2 react with 5.43g of O2, 4.86g of NiO are obtained. The theoretical yield of Nio is? The limiting reactant is? The percentage yield is what percent?
At a certain temperature, the equilibrium constant, Kc, for this reaction is 2.60 SO2(g) + NO2(g)...
At a certain temperature, the equilibrium constant, Kc, for this reaction is 2.60 SO2(g) + NO2(g) <--> SO3(g) + NO(g) At this temperature, calculate the number of moles of NO2(g) that must be added to 3.12 mol of SO2(g) in order to form 1.30 mol of SO3(g) equilibrium
Consider this reaction: H2(g) +    O2 (g)     à       H2O (g)                       &nbsp
Consider this reaction: H2(g) +    O2 (g)     à       H2O (g)                                          dHo = __________ Balance the equation and put the correct number of moles in the equation above. (1 point) Classify the forward reaction as (1) Combustion, (2) Decomposition, (3) Single replacement, (4) Double replacement, (5) Neutralization, (6) Synthesis. Circle the correct answer. (1 point) In this reaction did Hydrogen get oxidized or reduced? Circle the correct answer. (1 point) Based on your answer above is Hydrogen an...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT