In: Physics
It takes 2.95 ms for the current in an LR circuit to increase from zero to 0.85 its maximum value.
Part A
Determine the time constant of the circuit.
Express your answer to two significant figures and include the appropriate units.
|
|||
τ = |
Part B
Determine the resistance of the circuit if L = 22.0 mH .
Express your answer to two significant figures and include the appropriate units.
|
|||
R = |
In LR circuit :
time taken, t = 2.95 ms = 2.95 x 10-3 sec
change in current, I / I0 = 0.85 A
Part-A : The time constant of the circuit is given as -
using an equations, I = I0 (1 - e-t / ) { eq. 1 }
I / I0 = (1 - e-t / )
inserting the values in above eq.
(0.85 A) = 1 - e(-2.95 x 10^-3 / )
e(-2.95 x 10^-3 / ) = 1 - (0.85 A)
e(-2.95 x 10^-3 / ) = 0.15 A
(-2.95 x 10-3 sec) / = log (0.15)
(-2.95 x 10-3 sec) / = -1.897
= (2.95 x 10-3 sec) / (1.897)
= 1.5 x 10-3 sec
= 1.5 ms
Part-B : the resistance of the circuit is given as -
time constant, = L / R { eq.2 }
where, L = inductance = 22 mH = 22 x 10-3 H
inserting the values in eq.2,
(1.5 x 10-3 s) = (22 x 10-3 H) / R
R = (22 x 10-3 H) / (1.5 x 10-3 s)
R = 14.6