In: Physics
An electron (in a hydrogen atom) in the n=5 state drops to the n=2 state by undergoing two successive downward jumps. What are all possible combinations of the resulting photon wavelengths?
all possibilities are
n = 5 ---> n = 4
n = 5 ---> n = 3
n = 5 --> n = 2
n = 4 ---> n = 3
n = 4 ---> n = 2
n = 3 ---> n = 2
1) n1 = 5 , n2 = 4
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/4^2 - 1/5^2)
= 4.896*10^-20 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(4.896*10^-20)
= 4.06*10^-6 m
2) n1 = 5 , n2 = 3
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/3^2 - 1/5^2)
= 1.547*10^-19 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(1.547*10^-19)
= 1.28*10^-6 m
3) n1 = 5 , n2 = 2
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/2^2 - 1/5^2)
= 4.57*10^-19 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(4.57*10^-19)
= 4.35*10^-7 m 435 nm
4) n1 = 4 , n2 = 3
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/3^2 - 1/4^2)
= 1.06*10^-19 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(1.06*10^-19)
= 1.88*10^-6 m
5) n1 = 4 , n2 = 2
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/2^2 - 1/4^2)
= 4.08*10^-19 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(4.08*10^-19)
= 4.87*10^-7 m
6) n1 = 3 , n2 = 2
Energy of emited photon, E = 13.6eV*(1/n2^2 - 1/n1^2)
= 13.6*1.6*10^-19*(1/2^2 - 1/3^2)
= 3.02*10^-19 J
now use, E = h*c/lamda
==> lamda = h*c/E
= 6.626*10^-34*3*10^8/(3.02*10^-19)
= 6.58*10^-7 m