Question

In: Electrical Engineering

Word Problem : Explain what is Z transform, and describe the relation of the Z transform...

Word Problem : Explain what is Z transform, and describe the relation of the Z transform and the DTFT.

Solutions

Expert Solution


Related Solutions

Determine the response to the unit step if the Z transform of a response to the...
Determine the response to the unit step if the Z transform of a response to the unit impulse of a causal system is: H (z) = ((z ^ 3) -1) / ((z ^ 4) -1)
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if...
Let R be the relation on Z+× Z+ such that (a, b) R (c, d) if and only if ad=bc. (a) Show that R is an equivalence relation. (b) What is the equivalence class of (1,2)? List out at least five elements of the equivalence class. (c) Give an interpretation of the equivalence classes for R. [Here, an interpretation is a description of the equivalence classes that is more meaningful than a mere repetition of the definition of R. Hint:...
The equivalence relation on Z given by (?, ?) ∈ ? iff ? ≡ ? mod...
The equivalence relation on Z given by (?, ?) ∈ ? iff ? ≡ ? mod ? is an equivalence relation for an integer ? ≥ 2. a) What are the equivalence classes for R given a fixed integer ? ≥ 2? b) We denote the set of equivalence classes you found in (a) by Z_5. Even though elements of Z_5 are sets, it turns out that we can define addition and multiplication in the expected ways: [?] + [?]...
Prove that "congruent modulo 3" is an equivalence relation on Z. What are the equivalence classes?
Prove that "congruent modulo 3" is an equivalence relation on Z. What are the equivalence classes?
6. Let R be a relation on Z x Z such that for all ordered pairs...
6. Let R be a relation on Z x Z such that for all ordered pairs (a, b),(c, d) ∈ Z x Z, (a, b) R (c, d) ⇔ a ≤ c and b|d . Prove that R is a partial order relation.
Define a relation ~ on Z x Z such that (a,b) ~ (c,d) precisely when a...
Define a relation ~ on Z x Z such that (a,b) ~ (c,d) precisely when a + b = c + d. Let R = {[(a,b)] : (a,b) in Z x Z} (i.e. R is the set of all equivalence classes of Z x Z under the equivalence relation ~). For each of the following operations, determine whether or not the operation is well defined. Prove your answer. [(x,y)] * [(w, z)] = [(x + w, y + z)] [(x,y)]...
fourier transform of the following with steps: x(t) = z(t) + z(t - 30) x(t) =...
fourier transform of the following with steps: x(t) = z(t) + z(t - 30) x(t) = z(2*t) + z(t + 30) x(t) = z^(2)(t)
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m,...
Consider the relation R defined on the set Z as follows: ∀m, n ∈ Z, (m, n) ∈ R if and only if m + n = 2k for some integer k. For example, (3, 11) is in R because 3 + 11 = 14 = 2(7). (a) Is the relation reflexive? Prove or disprove. (b) Is the relation symmetric? Prove or disprove. (c) Is the relation transitive? Prove or disprove. (d) Is it an equivalence relation? Explain.
Let ∼ be the relation on P(Z) defined by A ∼ B if and only if...
Let ∼ be the relation on P(Z) defined by A ∼ B if and only if there is a bijection f : A → B. (a) Prove or disprove: ∼ is reflexive. (b) Prove or disprove: ∼ is irreflexive. (c) Prove or disprove: ∼ is symmetric. (d) Prove or disprove: ∼ is antisymmetric. (e) Prove or disprove: ∼ is transitive. (f) Is ∼ an equivalence relation? A partial order?
Explain the difference between motivational internalism and motivational externalism in relation to the problem of psychopathy.
Explain the difference between motivational internalism and motivational externalism in relation to the problem of psychopathy.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT