Question

In: Statistics and Probability

Question #1. A sample of n=16 is selected from a population = 100 and σ =...

Question #1. A sample of n=16 is selected from a population = 100 and σ = 32. If the sample mean is 127, what is the z-score for this sample mean?

Question #2. A sample of n =16 is selected from a normal population with M = 50, σ= 20. What is the probability of obtaining a sample mean greater than 49? Report to the thousandths.

Solutions

Expert Solution


Related Solutions

Question 31 2 pts A sample of n = 16 individuals is selected from a population...
Question 31 2 pts A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. If the sample variance is s2 = 16, then conduct a hypothesis test to evaluate the significance of the treatment effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05.
A random sample of n observations is selected from a population with standard deviation σ =...
A random sample of n observations is selected from a population with standard deviation σ = 1. Calculate the standard error of the mean (SE) for these values of n. (Round your answers to three decimal places.) (a) n = 1 SE = (b) n = 2 SE = (c) n = 4 SE = (d) n = 9 SE = (e) n = 16 SE = (f) n = 25 SE = (g) n = 100 SE =
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. A. Assume that the sample variance is s2 = 16. Compute a single sample t-test to evaluate if the treatment produced a significant effect and calculate r2 to measure the size of the treatment effect. Use a two-tailed test with α = .05. B. Now, assume...
Suppose a random sample of n = 16 observations is selected from a population that is...
Suppose a random sample of n = 16 observations is selected from a population that is normally distributed with mean equal to 105 and standard deviation equal to 11. (use SALT) (a) Give the mean and the standard deviation of the sampling distribution of the sample mean x. mean     standard deviation     (b) Find the probability that x exceeds 109. (Round your answer to four decimal places.) (c) Find the probability that the sample mean deviates from the population mean μ...
A sample of n = 16 individuals is selected from a population with µ = 30....
A sample of n = 16 individuals is selected from a population with µ = 30. After a treatment is administered to the individuals, the sample mean is found to be M = 33. a. If the sample variance is s2 = 16, then calculate the estimated standard error and determine whether the sample is sufficient to conclude that the treatment has a significant effect? Use a two-tailed test with α = .05. b. If the sample variance is s2...
A random sample of n measurements was selected from a population with standard deviation σ=19.8 and...
A random sample of n measurements was selected from a population with standard deviation σ=19.8 and unknown mean μ. Calculate a 99 % confidence interval for μ for each of the following situations (I did the third one right but can't get these two to work so figured I'd ask before emailing my instructor): (a) n=65, x¯=96.7 90.36380962, 103.0361904 = wrong (b) n=80, x¯=96.7 90.989, 102.411 = wrong Am I wrong or is it the system lol?
A random sample of n = 100 scores is selected from a normal population with a...
A random sample of n = 100 scores is selected from a normal population with a mean of μ = 60 and a standard deviation of σ = 20. What is the probability of obtaining a sample mean greater than M = 57?
A sample of n = 4 individuals is selected from a normal population with μ = 70 and σ = 10.
  3) A sample of n = 4 individuals is selected from a normal population with μ = 70 and σ = 10. A treatment is administered to the individuals in the sample, and after the treatment, the sample mean is found to be 75.      a) On the basis of the sample data, can you conclude that the treatment has a significant effect?           (Use a two-tailed test with α = .05).      b) Suppose that the sample consisted...
A random sample of n measurements was selected from a population with standard deviation σ=13.6and unknown...
A random sample of n measurements was selected from a population with standard deviation σ=13.6and unknown mean μ. Calculate a 90 % confidence interval for μ for each of the following situations: (a) n=35, x=78.5 (b) n=50, x¯=78.5 (c)n=70, x¯=78.5
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT