Question

In: Statistics and Probability

(#1) The average life of a certain type and brand of battery is 75 weeks. The...

(#1) The average life of a certain type and brand of battery is 75 weeks. The average life of each of 9 randomly selected batteries is listed: 74.5, 75, 72.3, 76, 75.2, 75.1, 75.3, 74.9, 74.8

Assume the battery life distribution is normal. It is of interest to know if the sample data suggest the average life is greater than 75 weeks. Test the hypothesis that the average life of the batteries is greater than 75 weeks at level .05.

(a) Since .05 < p-value < 0.1, the sample data provides enough evidence that the average life of the batteries is greater than 75 weeks.

(b) Since .05 < p-value < 0.1, the sample data does not provide enough evidence that the average life of the batteries is greater than 75 weeks.

(c) Since p-value > 0.1, the sample data does not provide enough evidence that the average life of the batteries is greater than 75 weeks.

(d) Since p-value > 0.1, the sample data provides enough evidence that the average life of the batteries is greater than 75 weeks.

Solutions

Expert Solution


Related Solutions

Batteries A certain type of automobile battery is known to last an average of 1110 days...
Batteries A certain type of automobile battery is known to last an average of 1110 days with a standard deviation of 80 days. If 400 of these batteries are selected, find the following probabilities for the average length of life of the selected batteries: a. The average is between 1100 and 1110. b. The average is greater than 1120. c. The average is less than 900.
A battery manufacturer claims that the lifetime (X) of a certain type of battery is normally...
A battery manufacturer claims that the lifetime (X) of a certain type of battery is normally distributed with a population mean of 40 hours and standard deviation 10 hours. (a) If the claim is true, what is P ( X ≤ 36.7 )? (b) Let X ¯ be the mean lifetime of the batteries in a random sample of size 100.  If the claim is true, what is P ( X ¯ ≤ 36.7 )?
The average life of a certain type of motor is 10 years with a standard deviation...
The average life of a certain type of motor is 10 years with a standard deviation of 2 years. You are interested in measuring the life time of this motor by conducting a survey asking customers’ experiences. a.) After a month-long survey, you collect 146 responses. What is the probability that the average life time of the motor is greater than 10 years and 6 months? b.) After a month-long survey, you collect 367 responses and find that the average...
The average life of a certain type of small motor was estimated to be 10 years...
The average life of a certain type of small motor was estimated to be 10 years with a standard deviation of 2 years. The manufacturer of the motor wants to issue a policy that will replace all motors that fail while under guarantee free of cost. If the company has budget to replace only 3% of all the motors that fail, how long a guarantee (in years) should they offer? You may assume that the lives of the motors are...
The average life of a certain type of motor is 10 years with a standard deviation...
The average life of a certain type of motor is 10 years with a standard deviation of 2 years. You are interested in measuring the life time of this motor by conducting a survey asking customers’ experiences. Use this information and answer Question 4a to 4h. Question 4a: What is the probability distribution of the life time of the motor, X? Question 4b: In the first week, you were able to obtain 25 survey responses on the life of the...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 75 hours and a standard deviation of 9 hours. a. What is the probability that a single battery randomly selected from the population will have a life between 70 and 80 hours? P(70 ≤ x ≤80​)equals=0.4215 ​(Round to four decimal places as​ needed.) b. What is the probability that 4 randomly sampled batteries from the population will have a sample mean life...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 80 hours and a standard deviation of 9 hours. Complete parts a through c. a. What is the probability that a single battery randomly selected from the population will have a life between 7575 and 85 ​hours? b. What is the probability that 99 randomly sampled batteries from the population will have a sample mean life of between 75 and 85 ​hours?...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a...
Suppose the life of a particular brand of calculator battery is approximately normally distributed with a mean of 75 hours and a standard deviation of 9 hours. What is the probability that 9 randomly sampled batteries from the population will have a sample mean life of between 70 and 80 ​hours?
The lifetime of a certain type of battery is normally distributed with a mean of 1000...
The lifetime of a certain type of battery is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly selected battery will last between 950 and 1000 (round answers to three decimal places, example 0.xxx)? The lifetime of a certain type of battery is normally distributed with a mean of 1000 hours and a standard deviation of 100 hours. Find the probability that a randomly selected battery will last...
The lifetime of a certain kind of battery is exponentially distributed, with an average lifetime of...
The lifetime of a certain kind of battery is exponentially distributed, with an average lifetime of 25 hours 4. Find the value of the 60th percentile for the lifetime of one battery. Remember units! 5. Write an interpretation (a sentence) of the 60th percentile for the lifetime of one battery. Your interpretation should include the value of the 60th percentile with correct units. 6. We are interested in the average lifetime of 16 of these batteries. Call this random variable....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT