Question

In: Statistics and Probability

4. A newspaper claims that the mean age of its current readers (population 1) has dropped...

4. A newspaper claims that the mean age of its current readers (population 1) has dropped 3.6 years over the last 10 years (population 2). A market researcher believes that the newspaper's claim is incorrect and plans to conduct a hypothesis test to provide evidence against the newspaper's claim. State the null and alternative hypothesis for each scenario.

Solutions

Expert Solution

Here in this Question they asked for writing the hypothesis before that we must know what is the hypothesis and null and alternative hypothesis. Tge detailed explanation is given below,

Hypothesis is the tentative statement about the population.

Null hypothesis : The null hypothesis is the hypothesis with no difference. According to professor R.A Fisher null hypothesis is the hypothesis that tested for its possible rejections.

Alternative hypothesis :The alternative hypothesis is opposite of null hypothesis. The alternative hypothesis is Also called as Research hypothesis. Because the researchers claim is supported by this hypothesis.

Now coming back to our example, in our example the Newspaper claims that the mean age of its current readers has dropped 3.6 years over the last 10 year .

Here the market Researchers believes that the newspaper's claim is incorrect. So here according to definition the null hypothesis and research hypothesis is given below,

Hypothesis :

Ho : The mean age of current newspaper readers has dropped 3.6 years. ( Mu < 3.6)

vs

H1 : The mean age of current newspaper readers has not dropped. (Mu >= 3.6)

Here researchers want to prove the claim of newspapers is incorrect then the researchers have to state their hypothesis in alternative hypothesis.

Hope you understood the concept of hypothesis. If you understood then RATE POSITIVE ?. In case of any queries please feel free to ask in comment box.

Thank you.


Related Solutions

A company claims its employees' mean age is 36 years old. A simple random sample of...
A company claims its employees' mean age is 36 years old. A simple random sample of 40 employees is taken, and is found to have a sample mean of 35.8 years, and sample deviation of 2.2 years. a. construct and interpret a 98% confidence interval estimate of the true population mean age. b. do you think the company's claimed mean is reasonable, based on your answer to part A? Why? c. if we assume population mean is 36, as claimed,...
A population has a mean age of 50 years and a standard deviation equal to 10...
A population has a mean age of 50 years and a standard deviation equal to 10 years. To study the population, you decide to sample 36 individuals and measure their age. What is the probability that a sample mean age is between 47.5 and 52.5 years? Answer What is the probability of selecting a sample of 36 individuals that has a sample mean of 55 years or more? Answer What is the probability of selecting a sample of 36 individuals...
A cell phone manufacturer claims that the population mean battery life of its flagship smartphone model,...
A cell phone manufacturer claims that the population mean battery life of its flagship smartphone model, the Black Bear, is greater than the population mean battery life of the largest competitor, the Grizzly. A consumer advocacy publication tests this claim by purchasing a random sample of Black Bear smartphones and a random sample of Grizzly smartphones. Members of the publication charged each smartphone to full capacity and then had the smartphones play back the same videos until the batteries were...
A researcher claims that the mean age of the residents of a small town is more...
A researcher claims that the mean age of the residents of a small town is more than 32 years. The ages (in years) of a random sample of 36 residents are listed below. At α=0.10, α = 0.10 , alpha equals , 0.10 , comma is there enough evidence to support the researcher's claim? Assume the population standard deviation is 9 years. 41,33,47,31,26,39,19,25,23,31,39,36,41,28,33,41,44,40,30,29,46,42,53,21,29,43,46,39,35,33,42,35,43,35,24,21
4) For a population has a mean of μ = 16 and a standard deviation of...
4) For a population has a mean of μ = 16 and a standard deviation of σ= 8 find the z-score corresponding to a sample mean of M= 20 for each of the following sample sizes. n=4
A magazine reported the mean annual household income of its readers to be $150,000 with a...
A magazine reported the mean annual household income of its readers to be $150,000 with a standard deviation of $30,000. A recent sample of 80 households from among those subscribing to this magazine found a mean of $139,155. What is the upper bound of a 95% confidence interval for the mean income (correct to no decimal places)?
Use the Happy 1 variable for this exercise. Suppose someone claims the population mean is 55,...
Use the Happy 1 variable for this exercise. Suppose someone claims the population mean is 55, and the standard deviation is 10. PART 1 - For now, assume both of the claims about the population are correct. 1a. Given the assumed pop. mean and st.dev, calculate the probability of observing a value above the number for your first data point in the data set. (which is 36) 1b. Suppose you collected 8 new data points in a new sample. Calculate...
A food manufacturer claims that their new oat bran muffin has a population mean calorie content...
A food manufacturer claims that their new oat bran muffin has a population mean calorie content of 250 calories with a sample standard deviation of 10.1 calories. A government food researcher believes the manufacturer's claim is too low and decides to test the manufacturer's claim. A random sample of 25 muffins yields a sample mean calorie content of 254.9 calories. The food researcher decides to perform a hypothesis test at α = 1 % to determine if it is reasonable...
In auto racing, a pit crew claims that its mean pit stop time (for 4 new...
In auto racing, a pit crew claims that its mean pit stop time (for 4 new tires and fuel) is less than 13 seconds. A random selection of 32 pit stop times has a sample mean of 12.9 seconds and a standard deviation of 0.19 second. Is there enough evidence to support the claim at α = 0.01?
(a) The population 3, 4, 9, 14, and 20 has a mean of 10 and a...
(a) The population 3, 4, 9, 14, and 20 has a mean of 10 and a standard deviation of 6.356. The z-scores for each of the five data values are z3 ≈ −1.101, z4 ≈ −0.944, z9 ≈ −0.157, z14 ≈ 0.629, and z20 ≈ 1.573. Find the mean and the standard deviation of these z-scores. mean     standard deviation     (b) The population 2, 6, 12, 17, 22, and 25 has a mean of 14 and a standard deviation of 8.226....
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT