Question

In: Physics

Please answer these questions: 1) A man stands on the edge of the roof of a...

Please answer these questions:

1) A man stands on the edge of the roof of a 15.0-m tall building and throws a rock with a speed of 30.0 m/s at an angle of 33.3⁰ above the horizontal. Ignore air resistance. Calculate: the total time that the rock spends in the air?

2) A ball is thrown upward at an unknown angle with an initial speed of 20.0 m/s from the edge of a 45.0-m-high cliff. At the instant the ball is thrown, a woman starts running away from the base of the cliff with a constant speed of 6.00 m/s. The woman runs in a straight line on level ground, and air resistance acting on the ball can be ignored. At what angle above the horizontal should the ball be thrown so that the runner catches it just before it hits the ground, and how far does the woman run before she catches the ball?

Solutions

Expert Solution


Related Solutions

A man stands on the roof of a building of height 15.7 m and throws a...
A man stands on the roof of a building of height 15.7 m and throws a rock with a velocity of magnitude 30.1 m/s at an angle of 25.0 ? above the horizontal. You can ignore air resistance. A) Calculate the maximum height above the roof reached by the rock B)Calculate the magnitude of the velocity of the rock just before it strikes the ground C) Calculate the horizontal distance from the base of the building to the point where...
A man stands on the roof of a building of height 14.2 m and throws a...
A man stands on the roof of a building of height 14.2 m and throws a rock with a velocity of magnitude 26.9 m/s at an angle of 25.6 ∘ above the horizontal. You can ignore air resistance. A.) Calculate the maximum height above the roof reached by the rock. B.) Calculate the magnitude of the velocity of the rock just before it strikes the ground. C.) Calculate the horizontal distance from the base of the building to the point...
A man stands on the roof of a 10.0 m -tall building and throws a rock...
A man stands on the roof of a 10.0 m -tall building and throws a rock with a velocity of magnitude 30.0 m/s at an angle of 42.0 ∘ above the horizontal. You can ignore air resistance. A. Calculate the maximum height above the roof reached by the rock B. Calculate the magnitude of the velocity of the rock just before it strikes the ground C. Calculate the horizontal distance from the base of the building to the point where...
Please answer ALL questions: If a man with sickle cell anemia has a child with a...
Please answer ALL questions: If a man with sickle cell anemia has a child with a woman who is a carrier, what is the probability that their child will be a carrier? A 25% B 50% C 75% D 100% If a man with sickle cell anemia has a child with a woman who is homozygous for the normal Hballele, what is the probability that their child will be sickle-cell anemic? A 0% B 25% C 50% D 100% If...
Please answer all of the questions. Spider-Man and Spider-Woman are planning to have children in the...
Please answer all of the questions. Spider-Man and Spider-Woman are planning to have children in the near future. Spider-Man is able to spin webs (S) and cling to walls (C), whereas Spider-Woman can spin webs but cannot cling to walls. If both of these traits are inherited in a dominant manner (i.e., the dominant trait will always mask the recessive trait), Spider-Man is heterozygous for each trait, and Spider-Woman is heterozygous for the web-spinning trait... What would be the phenotypic...
A drunk man walking simulation A drunk man stands at origin. There is a cliff at...
A drunk man walking simulation A drunk man stands at origin. There is a cliff at x=10 and home at x=-10. He takes steps randomly left and right. Each step has the probability p of going left and q=1−p of going right. We desire to simulate and plot 100 random trajectories for the interval of 100 time instants. Once hit at home or cliff, a trajectory is stopped immediately and success or dead is declared. Otherwise, alive is declared. Obtain...
A woman stands at the edge of a cliff and throws a rock horizontally over the...
A woman stands at the edge of a cliff and throws a rock horizontally over the edge with a speed of v0 = 16.0 m/s. The rock leaves her hand at a height of h = 33.0 m above level ground at the bottom of the cliff, as shown in the figure. Note the coordinate system in the figure, where the origin is at the bottom of the cliff, directly below where the rock leaves the hand. Write the equations...
A student stands on the edge of a cliff and throws a stone horizantally over the...
A student stands on the edge of a cliff and throws a stone horizantally over the edge with a speeed "v1". The cliff is "h" meters high. Given [h, v1] a. The time for the stone to hit the ground b. The horizantal distance the stone traveled while in the air. c. The magnitude and direction of the stone's velocity just before hitting the ground
A student stands at the edge of a cliff and throws a stone horizontally over the...
A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of vi = 10.0 m/s. The cliff is h = 41.9 m above a body of water as shown in the figure below. With what speed and angle of impact does the stone land?
A student stands at the edge of a cliff and throws a stone horizontally over the...
A student stands at the edge of a cliff and throws a stone horizontally over the edge with a speed of 10.0 m/s. the cliff is 50.0 m above a flat horizontal beach. (a) how long after being released does the stone strike the beach before the cliff? (b) find the speed just before the stone strikes the beach. (c) find the traveling horizontal distance for the stone
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT