In: Statistics and Probability
Using the data set from the previous question (scatterplot.xlsx).
With the data point with the smallest x value removed, the scatter plot now suggests a ________ ["nonlinear" OR "linear"] relationship between the dependent and independent variables.
Data:
x | y |
45 | 2358 |
56 | 4204 |
26 | 287 |
54 | 3849 |
24 | 925 |
23 | 3273 |
34 | -678 |
45 | 3748 |
47 | 2898 |
43 | 1974 |
32 | 226 |
With the data point with the smallest x value removed, the scatter plot now suggests a linear relationship between the dependent and independent variables.
Line of Regression Y on X i.e Y = bo + b1 X | ||||
X | Y | (Xi - Mean)^2 | (Yi - Mean)^2 | (Xi-Mean)*(Yi-Mean) |
45 | 2358 | 36 | 68263.424 | 1567.636 |
56 | 4204 | 289 | 4440598.232 | 35823.636 |
26 | 287 | 169 | 3275112.9 | 23526.455 |
54 | 3849 | 225 | 3070459.615 | 26284.091 |
24 | 925 | 225 | 1372944.866 | 17575.91 |
23 | 3273 | 256 | 1383617.465 | -18820.363 |
34 | -678 | 25 | 7699111.589 | 13873.637 |
45 | 3748 | 36 | 2726701.53 | 9907.636 |
47 | 2898 | 64 | 642037.94 | 6410.182 |
43 | 1974 | 16 | 15061.99 | -490.909 |
32 | 226 | 49 | 3499620.631 | 13095.091 |
calculation procedure for regression
mean of X = ∑ X / n = 39
mean of Y = ∑ Y / n = 2096.7273
∑ (Xi - Mean)^2 = 1390
∑ (Yi - Mean)^2 = 28193530.18
∑ (Xi-Mean)*(Yi-Mean) = 128753.002
b1 = ∑ (Xi-Mean)*(Yi-Mean) / ∑ (Xi - Mean)^2
= 128753.002 / 1390
= 92.628
bo = ∑ Y / n - b1 * ∑ X / n
bo = 2096.7273 - 92.628*39 = -1515.767
value of regression equation is, Y = bo + b1 X
Y'=-1515.767+92.628* X