In: Statistics and Probability
Jim is a transportation engineer and is interested in whether roadways that score high in one traffic engineering aspect also tend to score high in other aspects. To address this question, he completed a survey of 80 roadways that contain five measures of effectiveness with ratings for safety, capacity, speed, alignment, and flow.
a) Conduct a correlational analysis to investigate these relationships. What are your conclusions?
b) Jim determines that the speed of a facility affect/s the other roadway scores. Reevaluate Jim's hypothesis by controlling for speed. What effect does partialling out the effects of speed have on the relationships?
safety capacity speed alignment flow
48 56 48 35
47
44 50 47 41
51
38 41 49 59
46
48 59 59 49
52
44 44 52 37
47
43 57 42 52
54
49 53 56 32
49
52 65 57 54
54
55 63 56 58
53
50 60 49 52
54
45 47 44 51
49
61 56 57 63
50
49 57 50 51
50
44 45 46 31
47
39 50 51 28
52
50 51 51 43
54
49 51 50 50
49
37 52 44 45
53
49 55 51 47
53
47 48 46 44
54
55 56 55 42
54
49 60 62 58
53
45 58 65 59
54
39 40 36 44
46
54 56 51 55
52
58 58 51 44
53
52 52 62 47
53
50 56 38 47
51
62 57 52 25
53
55 55 59 57
49
50 52 52 47
53
44 35 44 46
45
55 55 39 24
48
46 45 44 54
47
48 51 47 50
50
52 52 38 53
47
52 49 50 59
49
50 49 39 40
48
48 50 52 52
43
50 45 46 36
47
50 46 44 44
52
43 40 43 27
45
40 44 54 50
47
57 67 53 41
58
57 52 56 67
58
61 62 51 60
56
46 52 52 60
56
42 44 48 41
56
60 58 66 50
57
47 47 58 51
56
50 59 51 43
57
63 65 56 63
62
59 52 42 42
56
50 52 59 57
56
49 59 62 51
61
51 52 56 44
58
47 62 67 54
66
52 62 58 47
62
60 48 55 45
63
45 45 59 47
60
59 53 51 39
57
57 51 68 59
59
46 60 64 54
57
51 61 46 44
59
47 53 49 41
55
50 63 52 48
64
57 69 70 51
57
50 57 51 37
56
65 69 62 60
55
50 58 54 49
56
56 63 54 49
58
54 65 57 38
56
42 53 47 45
56
53 53 62 49
59
61 54 57 63
61
47 56 50 58
55
46 55 48 55
57
57 54 58 58
57
56 60 51 47
58
50 52 50 46 56
From the given data set, first we will compute the total correlation coefficient
safety | capacity | speed | alignment | flow |
x1 | x2 | x3 | x4 | x5 |
48 | 56 | 48 | 35 | 47 |
44 | 50 | 47 | 41 | 51 |
38 | 41 | 49 | 59 | 46 |
48 | 59 | 59 | 49 | 52 |
44 | 44 | 52 | 37 | 47 |
43 | 57 | 42 | 52 | 54 |
49 | 53 | 56 | 32 | 49 |
52 | 65 | 57 | 54 | 54 |
55 | 63 | 56 | 58 | 53 |
50 | 60 | 49 | 52 | 54 |
45 | 47 | 44 | 51 | 49 |
61 | 56 | 57 | 63 | 50 |
49 | 57 | 50 | 51 | 50 |
44 | 45 | 46 | 31 | 47 |
39 | 50 | 51 | 28 | 52 |
50 | 51 | 51 | 43 | 54 |
49 | 51 | 50 | 50 | 49 |
37 | 52 | 44 | 45 | 53 |
49 | 55 | 51 | 47 | 53 |
47 | 48 | 46 | 44 | 54 |
55 | 56 | 55 | 42 | 54 |
49 | 60 | 62 | 58 | 53 |
45 | 58 | 65 | 59 | 54 |
39 | 40 | 36 | 44 | 46 |
54 | 56 | 51 | 55 | 52 |
58 | 58 | 51 | 44 | 53 |
52 | 52 | 62 | 47 | 53 |
50 | 56 | 38 | 47 | 51 |
62 | 57 | 52 | 25 | 53 |
55 | 55 | 59 | 57 | 49 |
50 | 52 | 52 | 47 | 53 |
44 | 35 | 44 | 46 | 45 |
55 | 55 | 39 | 24 | 48 |
46 | 45 | 44 | 54 | 47 |
48 | 51 | 47 | 50 | 50 |
52 | 52 | 38 | 53 | 47 |
52 | 49 | 50 | 59 | 49 |
50 | 49 | 39 | 40 | 48 |
48 | 50 | 52 | 52 | 43 |
50 | 45 | 46 | 36 | 47 |
50 | 46 | 44 | 44 | 52 |
43 | 40 | 43 | 27 | 45 |
40 | 44 | 54 | 50 | 47 |
57 | 67 | 53 | 41 | 58 |
57 | 52 | 56 | 67 | 58 |
61 | 62 | 51 | 60 | 56 |
46 | 52 | 52 | 60 | 56 |
42 | 44 | 48 | 41 | 56 |
60 | 58 | 66 | 50 | 57 |
47 | 47 | 58 | 51 | 56 |
50 | 59 | 51 | 43 | 57 |
63 | 65 | 56 | 63 | 62 |
59 | 52 | 42 | 42 | 56 |
50 | 52 | 59 | 57 | 56 |
49 | 59 | 62 | 51 | 61 |
51 | 52 | 56 | 44 | 58 |
47 | 62 | 67 | 54 | 66 |
52 | 62 | 58 | 47 | 62 |
60 | 48 | 55 | 45 | 63 |
45 | 45 | 59 | 47 | 60 |
59 | 53 | 51 | 39 | 57 |
57 | 51 | 68 | 59 | 59 |
46 | 60 | 64 | 54 | 57 |
51 | 61 | 46 | 44 | 59 |
47 | 53 | 49 | 41 | 55 |
50 | 63 | 52 | 48 | 64 |
57 | 69 | 70 | 51 | 57 |
50 | 57 | 51 | 37 | 56 |
65 | 69 | 62 | 60 | 55 |
50 | 58 | 54 | 49 | 56 |
56 | 63 | 54 | 49 | 58 |
54 | 65 | 57 | 38 | 56 |
42 | 53 | 47 | 45 | 56 |
53 | 53 | 62 | 49 | 59 |
61 | 54 | 57 | 63 | 61 |
47 | 56 | 50 | 58 | 55 |
46 | 55 | 48 | 55 | 57 |
57 | 54 | 58 | 58 | 57 |
56 | 60 | 51 | 47 | 58 |
50 | 52 | 50 | 46 | 56 |
Since the calculation steps are very long, we will use the Excel to calculate the above total correlations
[How to do it in Excel: Go to data. Choose Data Analysis. Choose correlation. Select Data set]
The correlation coeffecient matrix is given below
x1 | x2 | x3 | x4 | x5 | |
x1 | 1.000 | ||||
x2 | 0.552 | 1.000 | |||
x3 | 0.351 | 0.462 | 1.000 | ||
x4 | 0.218 | 0.244 | 0.400 | 1.000 | |
x5 | 0.393 | 0.546 | 0.525 | 0.261 | 1.000 |
From the above, the following set of varibles have moderate correlation as they have values around 0.5
(x1, x2); (x2,x5) and (x3,x5)
Other combinations have low level of correlations that mean there is no strong relationship in the ratings
(b) According to Jim, speed is the deciding factor on the ratings. Therefore we need to find the relation of other variables with respect to x3 or in other words, how speed influenc other ratings.
From the above table it is clearly coming out there is only moderate relationship between x3 and x5 which is 0.525. So, only flow is affected by speed. Other facotrs are not so much affected by speed,