In: Statistics and Probability
The mean age for a person getting married for the first time is 27.3 years. Assume the ages for first marriages are normal with a standard deviation of 4.9 years. (Give probability answers to four decimal places.)
a) What is the probability that a person being married for the first time is between 23.6 and 31.7 years old?
b) What is the probability that a person being married for the first time is over 33.1 years old?
c) What is the probability that a person being married for the first time is between 25.4 and 33.8 years old?
d) 75% of people getting married for the first time do so before what age?
a)
µ =    27.3      
   
σ =    4.9      
   
we need to calculate probability for ,  
           
P (   23.6   < X <  
31.7   )
=P( (23.6-27.3)/4.9 < (X-µ)/σ < (31.7-27.3)/4.9 )  
           
          
   
P (    -0.755   < Z <   
0.898   )
= P ( Z <    0.898   ) - P ( Z
<   -0.76   ) =
0.8154   -    0.2251   =   
0.5903
b)
µ =    27.3      
           
σ =    4.9      
           
          
           
P ( X ≥   33.1   ) = P( (X-µ)/σ ≥ (33.1-27.3) /
4.9)          
   
= P(Z ≥   1.18   ) = P( Z <  
-1.184   ) =    0.1183  
(answer)
c)
µ =    27.3      
   
σ =    4.9      
   
we need to calculate probability for ,  
           
P (   25.4   < X <  
33.8   )
=P( (25.4-27.3)/4.9 < (X-µ)/σ < (33.8-27.3)/4.9 )  
           
          
   
P (    -0.388   < Z <   
1.327   )
= P ( Z <    1.327   ) - P ( Z
<   -0.39   ) =
0.9077   -    0.3491   =   
0.5586
d)
µ=   27.3  
σ =    4.9  
P(X≤x) =   0.75  
      
z value at 0.75=   0.6745   (excel formula
=NORMSINV(0.75))
z=(x-µ)/σ      
so, X=zσ+µ=   0.674   *4.9+27.3
X =   30.605   (answer)
Please let me know in case of any doubt.
Thanks in advance!
Please upvote!