Question

In: Physics

(2a) A 4750.0 kg open train car is rolling on frictionless rails at 24.3 m/s when...

(2a) A 4750.0 kg open train car is rolling on frictionless rails at 24.3 m/s when it starts pouring rain. A few minutes later, the car's speed is 18.0 m/s. What mass of water has collected in the car?

(2b) Two 485.0 g blocks of wood are 2.65 m apart on a frictionless table. A 23.1 g bullet is fired at 384.5 m/s toward the blocks. It passes all the way through the first block, then embeds itself in the second block. The speed of the first block immediately afterward is 1.07 m/s. What is the speed of the second block after the bullet stops?

(2c) A 2.67 kg sphere makes a perfectly inelastic collision with a second sphere that is initially at rest. The composite system moves with a speed equal to one third the original speed of the 2.67 kg sphere. What is the mass of the second sphere?

Solutions

Expert Solution


Related Solutions

A boxcar of length 10.1 m and height 2.4 m is at rest on frictionless rails....
A boxcar of length 10.1 m and height 2.4 m is at rest on frictionless rails. Inside the boxcar (whose mass when empty is 3600 kg) a tank containing 1700 kg of water is located at the left end. The tank is 1.0 m long and 2.4 m tall. At some point the walls of the tank start to leak, and the water fills the floor of the boxcar uniformly. Assume that all the water stays in the boxcar. A....
A 4100 kg open railroad car coasts along with a constant speed of 9.90 m/s on...
A 4100 kg open railroad car coasts along with a constant speed of 9.90 m/s on a level track. Snow begins to fall vertically and fills the car at a rate of 5.00 kg/min . Ignoring friction with the tracks, what is the speed of the car after 80.0 min ?
A 60.0 kg skier is moving at 6.15 m/s on a frictionless, horizontal snow-covered plateau when...
A 60.0 kg skier is moving at 6.15 m/s on a frictionless, horizontal snow-covered plateau when she encounters a rough patch 3.95 m long. The coefficient of kinetic friction between this patch and her skis is 0.330. After crossing the rough patch and returning to friction-free snow, she skis down an icy, frictionless hill 2.95 m high. How fast is the skier moving when she gets to the bottom of the hill? How much internal energy was generated in crossing...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is...
A 2290 kg car traveling at 11.7 m/s collides with a 2620 kg car that is initially at rest at the stoplight. The cars stick together and move 3.30 m before friction causes them to stop. Determine the coefficient of kinetic friction betwen the cars and the road, assuming that the negative acceleration is constant and that all wheels on both cars lock at the time of impact.
A 2.90-kg ball, moving to the right at a velocity of +1.53 m/s on a frictionless...
A 2.90-kg ball, moving to the right at a velocity of +1.53 m/s on a frictionless table, collides head-on with a stationary 6.20-kg ball. Find the final velocities of (a) the 2.90-kg ball and of (b) the 6.20-kg ball if the collision is elastic. (c) Find the magnitude and direction of the final velocity of the two balls if the collision is completely inelastic.
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving...
A 1700 kg car moving east at 17 m/s collides with a 1800 kg car moving south at 20 m/s, and the two cars stick together. Consider east the positive x-direction and north the positive y-direction. a) What is the x-component of the initial momentum before the collision? ( -7100 kg·m/s, 64900 kg·m/s or 28900 kg·m/s) b) What is the y-component of the initial momentum before the collision? (-36000 kg·m/s, -7100 kg·m/s, 64900 kg·m/s or 36000 kg·m/s) c) What is...
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s....
A 0.990 kg block slides on a frictionless, horizontal surface with a speed of 1.40 m/s. The block encounters an unstretched spring with a force constant of 231 N/m. Before the block comes to rest, the spring is compressed by 9.17 cm. 1) Suppose the force constant of the spring is doubled, but the mass and speed of the block remain the same. By what multiplicative factor do you expect the maximum compression of the spring to change? Explain. 2)...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface...
A 1.85 kg block slides with a speed of 0.955 m/s on a frictionless horizontal surface until it encounters a spring with a force constant of 980 N/m . The block comes to rest after compressing the spring 4.15 cm. A.Find the spring potential energy, U, the kinetic energy of the block, K, and the total mechanical energy of the system, E, for compressions of 0 cm. B.Find the spring potential energy, U, the kinetic energy of the block, K,...
Brakes are applied to a 3000-kg car moving at 30 m/s. The car skids 200 m...
Brakes are applied to a 3000-kg car moving at 30 m/s. The car skids 200 m and stops. What is the coefficient of kinetic friction?
My Notes A 5000-kg freight car rolls along rails with negligible friction. The car is brought...
My Notes A 5000-kg freight car rolls along rails with negligible friction. The car is brought to rest by a combination of two coiled springs as illustrated in the figure below. Both springs are described by Hooke's law and have spring constants with k1 = 1700 N/m and k2 = 3200 N/m. After the first spring compresses a distance of 33.0 cm, the second spring acts with the first to increase the force as additional compression occurs as shown in...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT