In: Statistics and Probability
A concrete mix must withstand an average compressive stress of more than 1,300 KN / m2. The mixture will not be used unless we have sufficient evidence that the specification is being met. Assume that effort is a normally distributed random variable with a standard deviation of 60. A sample of 20 specimens is taken:
1350.343 |
1284.595 |
1248.794 |
1233.162 |
1314.349 |
1392.296 |
1420.502 |
1411.886 |
1330.357 |
1338.123 |
1353.439 |
1210.946 |
1319.671 |
1375.284 |
1311.355 |
1299.507 |
1231.943 |
1295.214 |
1355.426 |
1530.636 |
a.
Given that,
population mean(u)=1300
standard deviation, σ =60
sample mean, x =1330.3914
number (n)=20
null, Ho: μ=1300
alternate, H1: μ>1300
level of significance, α = 0.05
from standard normal table,right tailed z α/2 =1.645
since our test is right-tailed
reject Ho, if zo > 1.645
we use test statistic (z) = x-u/(s.d/sqrt(n))
zo = 1330.3914-1300/(60/sqrt(20)
zo = 2.265
| zo | = 2.265
critical value
the value of |z α| at los 5% is 1.645
we got |zo| =2.265 & | z α | = 1.645
make decision
hence value of | zo | > | z α| and here we reject Ho
p-value : right tail - ha : ( p > 2.265 ) = 0.012
hence value of p0.05 > 0.012, here we reject Ho
ANSWERS
---------------
a.
null, Ho: μ=1300
alternate, H1: μ>1300
b.
test statistic: 2.265
critical value: 1.645
decision: reject Ho
p-value: 0.012
we have enough evidence to support the claim that A concrete mix
must withstand an average compressive stress of more than 1,300 KN
/ m2.
c.
Given that,
Standard deviation, σ =60
Sample Mean, X =1330.3914
Null, H0: μ=1300
Alternate, H1: μ>1300
Level of significance, α = 0.05
From Standard normal table, Z α/2 =1.6449
Since our test is right-tailed
Reject Ho, if Zo < -1.6449 OR if Zo > 1.6449
Reject Ho if (x-1300)/60/√(n) < -1.6449 OR if (x-1300)/60/√(n)
> 1.6449
Reject Ho if x < 1300-98.694/√(n) OR if x >
1300-98.694/√(n)
-----------------------------------------------------------------------------------------------------
Suppose the size of the sample is n = 20 then the critical
region
becomes,
Reject Ho if x < 1300-98.694/√(20) OR if x >
1300+98.694/√(20)
Reject Ho if x < 1277.9314 OR if x > 1322.0686
Implies, don't reject Ho if 1277.9314≤ x ≤ 1322.0686
Suppose the true mean is 1325
Probability of Type II error,
P(Type II error) = P(Don't Reject Ho | H1 is true )
= P(1277.9314 ≤ x ≤ 1322.0686 | μ1 = 1325)
= P(1277.9314-1325/60/√(20) ≤ x - μ / σ/√n ≤
1322.0686-1325/60/√(20)
= P(-3.5083 ≤ Z ≤-0.2185 )
= P( Z ≤-0.2185) - P( Z ≤-3.5083)
= 0.4135 - 0.0002 [ Using Z Table ]
= 0.4133
For n =20 the probability of Type II error is 0.4133