Estimating the value of the subject response, y, for an value
of x within the observed...
Estimating the value of the subject response, y, for an value
of x within the observed values of x in the data.
Interpolation
Marginal Change
Residual Error
Extrapolation
Which measure of correlation is the strongest association.
A) 0.92
B) 0.001
C) -0.014
D) -0.95
High (strong) correlation implies cause and effect.
True
False
Estimating the value of the subject response, y, for an value
of x outside the observed values of x in the data.
Marginal Change
Interpolation
Correlation
Extrapolation
The sum of the squares of the vertical distances from the data
points to the line is made as small as possible; that is, the line
such that the sum of the residuals (errors) squared is minimized –
least-squares error.
Person
number
X
Value
Y
Value
Person number
X
Value
Y
Value
Person number
X
Value
Y
Value
1
24
30
11
39
42
21
21
27
2
42
53
12
60
65
22
33
29
3
20
27
13
34
40
23
25
27
4
31
30
14
24
26
24
22
25
5
22
24
15
51
57
25
28
33
6
46
47
16
80
83
26
34
40
7
52
60
17
28
27
27
53...
Person
number
X
Value
Y
Value
Person number
X
Value
Y
Value
Person number
X
Value
Y
Value
1
24
30
11
39
42
21
21
27
2
42
53
12
60
65
22
33
29
3
20
27
13
34
40
23
25
27
4
31
30
14
24
26
24
22
25
5
22
24
15
51
57
25
28
33
6
46
47
16
80
83
26
34
40
7
52
60
17
28
27
27
53...
Given function f(x,y,z)=x^(2)+2*y^(2)+z^(2), subject to two
constraints x+y+z=6 and x-2*y+z=0. find the extreme value of
f(x,y,z) and determine whether it is maximum of minimum.