Question

In: Math

Maximize p = x subject to x − y ≤ 4 −x + 3y ≤ 4...

Maximize p = x subject to

x y 4
x + 3y 4
x ≥ 0, y ≥ 0.

HINT [See Examples 1 and 2.]

p =
(x, y) =
____________

Solutions

Expert Solution

[Intercepting point of these two equation:-

now from the graph we can see that shaded region is solution region. And there is four corner point A(4,0), B(8,4), C(0,1.33), (0,0).

Now we calculate the value of p in this corner point,

So from the table we can see that maximum value of objective function

p = x =8 and it is occures at the point B(8,4)

Answer:-

P = 8

(x,y) = (8,4)


Related Solutions

Maximize p = x + 8y subject to x + y ≤ 25 y ≥ 10...
Maximize p = x + 8y subject to x + y ≤ 25 y ≥ 10 2x − y ≥ 0 x ≥ 0, y ≥ 0. P=? (X,Y)= ? (NOT BY GRAPHING)
Maximize p = 13x + 8y subject to x + y ≤ 25 x ≥ 10...
Maximize p = 13x + 8y subject to x + y ≤ 25 x ≥ 10 −x + 2y ≥ 0 x ≥ 0, y ≥ 0. P = ? (X,Y)= ( ?,? )
Maximize 250 + 7x − 5y subject to: 2x + 3y ≤ 90 2x+ y≤62 x+...
Maximize 250 + 7x − 5y subject to: 2x + 3y ≤ 90 2x+ y≤62 x+ y≥20 x ≥ 0, y ≥ 0
Maximize p = 2x + 7y + 5z subject to x + y + z ≤...
Maximize p = 2x + 7y + 5z subject to x + y + z ≤ 150 x + y + z ≥ 100 x ≥ 0, y ≥ 0, z ≥ 0. P= ? (x, y, z)= ?
Maximize p = 14x + 10y + 12z subject to x + y − z ≤...
Maximize p = 14x + 10y + 12z subject to x + y − z ≤ 3 x + 2y + z ≤ 8 x + y ≤ 5 x ≥ 0, y ≥ 0, z ≥ 0 P= (x,y,z)=
Maximize objective function P=3x+4y subject to: x + y ≤ 7 x ≥ 0 x+4y ≤...
Maximize objective function P=3x+4y subject to: x + y ≤ 7 x ≥ 0 x+4y ≤ 16 y ≥ 0
Maximize / minimize f(x,y) = 3x+4y subject to x^2 + y^2 = 25
Maximize / minimize f(x,y) = 3x+4y subject to x^2 + y^2 = 25
Maximizar P=2x+3y+5z Sujeto a: x+2y+3z ≤ 12                x-3y+2z ≤ 10                 x ≥ 0, y...
Maximizar P=2x+3y+5z Sujeto a: x+2y+3z ≤ 12                x-3y+2z ≤ 10                 x ≥ 0, y ≥ 0, z ≥ 0 Maximize P=2x+3y+5z Subject to: x+2y+3z ≤ 12 x-3y+2z ≤ 10                 x ≥ 0, y ≥ 0, z ≥ 0
Minimize ?(?,?)=3?−2?+6f(x,y)=3y−2x+6 subject to ?≥−3,    ?≤4,    4?+7?≤23,    8?+7?≥−31.
Minimize ?(?,?)=3?−2?+6f(x,y)=3y−2x+6 subject to ?≥−3,    ?≤4,    4?+7?≤23,    8?+7?≥−31.
Given the following linear optimization problem Maximize 10x + 20y Subject to x + y <...
Given the following linear optimization problem Maximize 10x + 20y Subject to x + y < 50 2x + 3y < 120 x > 10 x, y > 0 (a) Graph the constraints and determine the feasible region. (b) Find the coordinates of each corner point of the feasible region. (c) Determine the optimal solution and optimal objective function value.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT