In: Accounting
The demand for electrical components is fixed at a rate of 2400 units/month.Each time the store makes an order ot costs 320$.The item costs $3.the annual inventory holding cost rate is 20%. Q*=5543 units, T8=2.3 months.
Explanation: Periodic rderis calculated on the annual demand basis. Annual demand D=2400 *12units/year. The order cost K is $320 and now we need ‘h’ which is holding cost per unit. As we have $3 per unit cost the annual holding rate is 0.2 of it, which is 0.2*3= $0.6 /per unit holding cost in $. Then we have the EOQ= sqrt(2*2400*12*320 /0.6)=5543 units/order. With K=320, h=$0.6 we have Toptimal (in years) = sqrt(2*320/(0.6*2400*12))=0.19yr=2.3 months- every 2.3 months the inventory is to be replenished by 5543 units.
So, components are stored in inventory for 2.3 months before they are fully sold. The inventory turns ( annually) in such case is1/ 0.19 ( year)=5.26
Let’s increase the inventory annual holding cost rate from 20% to 30%, all else being the same How would that reflect on the EOQ value, optimal period and inventory turns#?
Note for help: consistency matters- if the inventory holding cost rate is given as annual, the demand D also has to be given as annual.

Formula sheet
| A1 | B | C | D | E | F | G | H | |||||
| 2 | ||||||||||||
| 3 | Economic order quantity (EOQ) is the order quantity at which total cost of inventory management is minimum. | |||||||||||
| 4 | EOQ is given by following equation: | |||||||||||
| 5 |
|
|||||||||||
| 6 | ||||||||||||
| 7 | ||||||||||||
| 8 | ||||||||||||
| 9 | Using the following data: | |||||||||||
| 10 | Flow rate | =Demand per year | =2400*12 | |||||||||
| 11 | Setup Cost | =Ordering cost | 320 | |||||||||
| 12 | ||||||||||||
| 13 | Annual holding cost rate | 0.25 | ||||||||||
| 14 | Price per pair of boot | 3 | ||||||||||
| 15 | Holding cost per year per unit | =Price for inventory purchase*Annual holding cost. | ||||||||||
| 16 | =E14*E13 | =E14*E13 | ||||||||||
| 17 | ||||||||||||
| 18 | Now EOQ can be calcaculated using the above data is | |||||||||||
| 19 | ||||||||||||
| 20 |
|
|||||||||||
| 21 | ||||||||||||
| 22 | ||||||||||||
| 23 | ||||||||||||
| 24 | ||||||||||||
| 25 | ||||||||||||
| 26 | ||||||||||||
| 27 | Hence EOQ is | =SQRT(2*E11*E10/D16) | =SQRT(2*E11*E10/D16) | |||||||||
| 28 | ||||||||||||
| 29 | Expected Number of Orders Per Year | =Demand / EOQ | ||||||||||
| 30 | =E10/D27 | =E10/D27 | ||||||||||
| 31 | ||||||||||||
| 32 | Optimal time between two Orders in Years | =1/ Expected Number of orders per year | ||||||||||
| 33 | =1/D30 | =1/D30 | ||||||||||
| 34 | ||||||||||||
| 35 | Inventory turns | =1/Optimal time between two orders | ||||||||||
| 36 | =1/D33 | =1/D33 | ||||||||||
| 37 | ||||||||||||
| 38 | Hence, | |||||||||||
| 39 | Optimal time | =D33 | Years | |||||||||
| 40 | Inventory turns | =D36 | ||||||||||
| 41 | ||||||||||||