Question

In: Chemistry

1. Using a table of standard reduction potentials, standard conditions are assumed. (a) Arrange the following...

1. Using a table of standard reduction potentials, standard conditions are assumed.

(a) Arrange the following chemical species: Zn(s), Cl-(aq), Cu(s), K(s), and H2(g) in order of their ease of oxidation, from easiest to oxidize to hardest to oxidize.

(b) Arrange the following chemical species: H+(aq), I2(s), Na+(aq), Ag+(aq), and H2O(l) in order of their ease of reduction, from easiest to reduce to hardest to reduce.

2. Which of the following reactions is/are product favored?

Zn(s) + I2(s) ? Zn+2 (aq) + 2I-(aq)

2Cl-(aq) + I2(s) ? Cl2(g) + 2I-(aq)

2Na+(aq) + 2Cl-(aq) ? 2Na(s) + Cl2(g)

2K(s) + 2H2O(l) ? 2K+(aq) + H2(g) + 2OH-(aq)

Solutions

Expert Solution

1 (a). According to their oxidation potential:

     Zn(s)          Zn2+(aq)                E0 = 0.7618V

     2Cl-(aq)          Cl2(g)                E0 = -1.36V

     Cu(s)             Cu2+(aq)            E0 = -0.337V

     K(s)              K+(aq)                E0 = 2.931V

     H2(g)             2H+(aq)              E0 = 0V

decreasing order of their ease of oxidation is given as:

   Cl-(aq)   >   Cu(s)   >    H2(g)    >   Zn(s)   >   K(s)

(b). In the same way the decreasing order of their ease of reduction is given as:

    Na+(aq)   >   H2O(l)    >    H+(aq)    >     Ag+(aq)     >     I2(s)

2. The following reactions are favoured -

   Zn(s) + I2(s) Zn+2 (aq) + 2I-(aq)

and,

2K(s) + 2H2O(l) 2K+(aq) + H2(g) + 2OH-(aq)


Related Solutions

Assuming standard conditions, answer the following questions. (Use the table of Standard Reduction Potentials for common...
Assuming standard conditions, answer the following questions. (Use the table of Standard Reduction Potentials for common Half-reactions from your text. If hydrogen is one of the reagents, assume acidic solution.) 1) Is Cr3+(aq) capable of oxidizing Fe2+(aq) to Fe3+(aq)? 2) Is Cr metal capable of reducing Fe2+(aq)? 3) Is Sn metal capable of reducing Fe3+(aq) to Fe2+(aq)? 4)Is H2(g) capable of reducing Ni2+(aq)? 5) Is Fe2+(aq) capable of reducing Cr3+(aq) to Cr metal? 6)Is VO2+(aq) capable of oxidizing Fe2+(aq)?
Assuming standard conditions, and considering the table of standard reduction potentials for half-reactions, given in your...
Assuming standard conditions, and considering the table of standard reduction potentials for half-reactions, given in your text, rank the following species according to their relative strength as reducing agents. For example, the most powerful reducing agent would be given rank "1", and the least "6". Cd Mn H2 (acidic half-cell solution) Na Cl- ClO2-
Thanks for the step by step instructions A. Using the Table of Standard Reduction Potentials table...
Thanks for the step by step instructions A. Using the Table of Standard Reduction Potentials table shown below, what is the standard cell potential for an electrochemical cell that has iron (Fe) and magnesium (Mg) electrodes? Also, identify the cathode. B. What is the standard cell potential for a voltaic cell using the Pb2+/Pb and Mg2+/Mg half-reactions? Which metal is the cathode? (Use the Standard Reduction Potentials table shown below) C. What is the standard cell potential for a voltaic...
1.) Use a table of Standard Reduction Potentials to predict if a reaction will occur when...
1.) Use a table of Standard Reduction Potentials to predict if a reaction will occur when Mg metal is put into a 1M aqueous H+solution. If a reaction will occur, write a balanced net ionic equation for the reaction. If no reaction will occur, leave all boxes blank. 2.) Use a table of Standard Reduction Potentials to predict if a reaction will occur between Zn metal and I2(s), when the two are brought in contact via standard half-cells in a...
From the standard reduction potentials in Table 11.1 in the Appendix, calculate the standard cell potential...
From the standard reduction potentials in Table 11.1 in the Appendix, calculate the standard cell potential and the equilibrium constant at 298.15 K for the following reactions: (a) 4 NiOOH(s) + 2 H2O(l) ↔ 4 Ni(OH)2(s) + O2(g) (b) 4 NO3 - (aq) + 4 H+ (aq) ↔ 4 NO(g) + 2 H2O (l) + 3 O2(g)
Under standard conditions, Consider the following standard reduction potentials, Ni2+(aq) + 2 e- → Ni(s) E°...
Under standard conditions, Consider the following standard reduction potentials, Ni2+(aq) + 2 e- → Ni(s) E° = -0.26 V I2(s) + 2 e- → 2 I-(aq) E° = +0.54 V Under standard conditions, a)Ni2+(aq) is a stronger oxidizing agent than I2(s) and I-(aq) is a stronger reducing agent than Ni(s). b)I2(s) is a stronger oxidizing agent than Ni2+(aq) and Ni(s) is a stronger reducing agent than I-(aq). c)I-(aq) is a stronger oxidizing agent than Ni(s) and I2(s) is a stronger...
1. Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium...
1. Using the standard reduction potentials listed in Appendix E in the textbook, calculate the equilibrium constant for each of the following reactions at 298 K. A. Fe(s)+Ni2+(aq)?Fe2+(aq)+Ni(s) B.Co(s)+2H+(aq)?Co2+(aq)+H2(g) C.10Br?(aq)+2MnO?4(aq)+16H+(aq)?2Mn2+(aq)+8H2O(l)+5Br2(l) 2. If the equilibrium constant for a two-electron redox reaction at 298 K is 1.8×10?4, calculate the corresponding ?G? and E?cel under standard conditions. 2A. Express your answer using two significant figures. Delta G=kJ 2B. Express your answer using two significant figures. E cell= V
Consider your observations of the halogens. Refer to the table of Standard Reduction Potentials (Links to...
Consider your observations of the halogens. Refer to the table of Standard Reduction Potentials (Links to an external site.)Links to an external site. (the table is arranged alphabetically). What can you infer about the relationship between oxidant strength and standard reduction potential? i.e. if a halogen is a strong oxidizing agent does it have a more positive or more negative standard reduction potential? With that in mind, would you expect MnO4-(aq) to react with NaI in acidic or in basic...
use the table of standard reduction potentials to ecplain why iron will reduce copper but it...
use the table of standard reduction potentials to ecplain why iron will reduce copper but it will not reduce sodium
Using standard reduction potentials, calculate the standard emf, free energy, and equilibrium constant at 298K for...
Using standard reduction potentials, calculate the standard emf, free energy, and equilibrium constant at 298K for each of the following reactions: a. Cl2(g) + 2 I-(aq) → 2 Cl-(aq) + I2(s) b. 2 NO3-(aq) + 8 H+(aq) 3 Cu(s) → 2 NO(g) + 4 H2O(l) + 3 Cu2+(aq) c. Fe(s) + 2 Fe3+(aq) → 3 Fe2+(aq) Ive posted this twice already and the answers have been really inconsistant
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT