In: Statistics and Probability
Can annual sports team revenues be used to predict franchise values?
Team Revenue ($mil) Value ($mil)
Team 1 552 2815
Team 2 677 3436
Team 3 372 1329
Team 4 625 3198
Team 5 557 1847
Team 6 313 691
Team 7 339 856
Team 8 354 849
Team 9 396 867
Team 10 219 483
Team 11 257 581
Team 12 225 514
Team 13 516 415
Team 14 203 348
Team 15 154 328
Team 16 176 327
Team 17 161 308
Team 18 333 599
Team 19 413 864
Team 20 156 296
A. Assuming a linear relationship, use the least-squares method to compute the regression coefficients b0 and b1.
B. Predict the mean value of a soccer franchise that generates $200 million of annual revenue.
Revenue (x) | Value (y) | x2 | y2 | xy | |
552 | 2815 | 304704 | 7924225 | 1553880 | |
677 | 3436 | 458329 | 11806096 | 2326172 | |
372 | 1329 | 138384 | 1766241 | 494388 | |
625 | 3198 | 390625 | 10227204 | 1998750 | |
557 | 1847 | 310249 | 3411409 | 1028779 | |
313 | 691 | 97969 | 477481 | 216283 | |
339 | 856 | 114921 | 732736 | 290184 | |
354 | 849 | 125316 | 720801 | 300546 | |
396 | 867 | 1940497 | 751689 | 343332 | |
219 | 483 | 3576290 | 233289 | 105777 | |
257 | 581 | 6694251 | 337561 | 149317 | |
225 | 514 | 13250118 | 264196 | 115650 | |
516 | 415 | 26109611 | 172225 | 214140 | |
203 | 348 | 51908973 | 121104 | 70644 | |
154 | 328 | 103719977 | 107584 | 50512 | |
176 | 327 | 207325033 | 106929 | 57552 | |
161 | 308 | 414524750 | 94864 | 49588 | |
333 | 599 | 827109003 | 358801 | 199467 | |
413 | 864 | 1650641716 | 746496 | 356832 | |
156 | 296 | 3294589181 | 87616 | 46176 | |
Total | Σx = 6998 | Σy = 20951 | Σx2 = 6603329897 | Σy2 = 40448547 | Σxy = 9967969 |
A. Least squre method: y = b0 + b1x
b1 = (nΣxy − ΣxΣy)/(nΣx2 − (Σx)2) = (20*9967969-6998*20951)/(20*6603329897-6998*6998) = 0.0004
b0 = (Σy − m Σx)/n = (20951-0.004*6998)/20 = 1046.15
y = 1046.15 + 0.0004x
B. Revenue: x = $200 million
Franchise value ($ million): y = 1046.15 + 0.0004x = 1046.15 + 0.0004*200 = 1046.15+0.08 = 1046.23