In: Statistics and Probability
Can annual sports team revenues be used to predict franchise values?
Team   Revenue ($mil)   Value ($mil)
Team 1   554   2806
Team 2   676   3437
Team 3   371   1333
Team 4   628   3202
Team 5   559   1852
Team 6   312   691
Team 7   342   858
Team 8   355   851
Team 9   394   869
Team 10   219   482
Team 11   258   579
Team 12   224   513
Team 13   516   414
Team 14   203   347
Team 15   156   329
Team 16   177   326
Team 17   162   307
Team 18   332   599
Team 19   411   863
Team 20   157   296
A. At the 0.05 level of significance, is there evidence of a linear relationship between the annual revenues generated and the value of a soccer franchise?
- The null and alternative hypotheses ?
- The value is?
- the test statistic is ?
B. Construct a 95% confidence interval estimate of the mean value of all soccer franchises that generate $300 million of annual revenue.
C. Construct a 95% prediction interval of the value of an individual soccer franchise that generates $300 million of annual revenue.
| Regression Analysis | ||||||
| r² | 0.744 | |||||
| r | 0.863 | |||||
| Std. Error | 512.633 | |||||
| n | 20 | |||||
| k | 1 | |||||
| Dep. Var. | Value($mil) | |||||
| ANOVA table | ||||||
| Source | SS | df | MS | F | p-value | |
| Regression | 1,37,77,935.7802 | 1 | 1,37,77,935.7802 | 52.43 | 9.84E-07 | |
| Residual | 47,30,258.4198 | 18 | 2,62,792.1344 | |||
| Total | 1,85,08,194.2000 | 19 | ||||
| Regression output | confidence interval | |||||
| variables | coefficients | std. error | t (df=18) | p-value | 95% lower | 95% upper | 
| Intercept | -777.2744 | 276.88 | -2.81 | 0.01 | -1358.98 | -195.56 | 
| Revenue($mil) | 5.2097 | 0.7195 | 7.241 | 9.84E-07 | 3.6981 | 6.7214 | 
| Predicted values for: Value($mil) | ||||||
| 95% Confidence Interval | 95% Prediction Interval | |||||
| Predicted | lower | upper | lower | upper | Leverage | |
| 785.650 | 533.107 | 1,038.192 | -320.564 | 1,891.864 | 0.055 | 
A. At the 0.05 level of significance, is there evidence of a linear relationship between the annual revenues generated and the value of a soccer franchise?
- The null and alternative hypotheses ?


The P-value is 0.0000
- the test statistic is 52.4290
B. Construct a 95% confidence interval estimate of the mean value of all soccer franchises that generate $300 million of annual revenue.
(533.107,1038.192)
C. Construct a 95% prediction interval of the value of an individual soccer franchise that generates $300 million of annual revenue.
(-320.564,1891.864)
.................................................
The given data is:
| Revenue($mil) | Value($mil) | 
| 554 | 2806 | 
| 676 | 3437 | 
| 371 | 1333 | 
| 628 | 3202 | 
| 559 | 1852 | 
| 312 | 691 | 
| 342 | 858 | 
| 355 | 851 | 
| 394 | 869 | 
| 219 | 482 | 
| 258 | 579 | 
| 224 | 513 | 
| 516 | 414 | 
| 203 | 347 | 
| 156 | 329 | 
| 177 | 326 | 
| 162 | 307 | 
| 332 | 599 | 
| 411 | 863 | 
| 157 | 296 |