In: Statistics and Probability
Can annual sports team revenues be used to predict franchise values?
Team Revenue ($mil) Value ($mil)
Team 1 554 2806
Team 2 676 3437
Team 3 371 1333
Team 4 628 3202
Team 5 559 1852
Team 6 312 691
Team 7 342 858
Team 8 355 851
Team 9 394 869
Team 10 219 482
Team 11 258 579
Team 12 224 513
Team 13 516 414
Team 14 203 347
Team 15 156 329
Team 16 177 326
Team 17 162 307
Team 18 332 599
Team 19 411 863
Team 20 157 296
A. At the 0.05 level of significance, is there evidence of a linear relationship between the annual revenues generated and the value of a soccer franchise?
- The null and alternative hypotheses ?
- The value is?
- the test statistic is ?
B. Construct a 95% confidence interval estimate of the mean value of all soccer franchises that generate $300 million of annual revenue.
C. Construct a 95% prediction interval of the value of an individual soccer franchise that generates $300 million of annual revenue.
Regression Analysis | ||||||
r² | 0.744 | |||||
r | 0.863 | |||||
Std. Error | 512.633 | |||||
n | 20 | |||||
k | 1 | |||||
Dep. Var. | Value($mil) | |||||
ANOVA table | ||||||
Source | SS | df | MS | F | p-value | |
Regression | 1,37,77,935.7802 | 1 | 1,37,77,935.7802 | 52.43 | 9.84E-07 | |
Residual | 47,30,258.4198 | 18 | 2,62,792.1344 | |||
Total | 1,85,08,194.2000 | 19 | ||||
Regression output | confidence interval | |||||
variables | coefficients | std. error | t (df=18) | p-value | 95% lower | 95% upper |
Intercept | -777.2744 | 276.88 | -2.81 | 0.01 | -1358.98 | -195.56 |
Revenue($mil) | 5.2097 | 0.7195 | 7.241 | 9.84E-07 | 3.6981 | 6.7214 |
Predicted values for: Value($mil) | ||||||
95% Confidence Interval | 95% Prediction Interval | |||||
Predicted | lower | upper | lower | upper | Leverage | |
785.650 | 533.107 | 1,038.192 | -320.564 | 1,891.864 | 0.055 |
A. At the 0.05 level of significance, is there evidence of a linear relationship between the annual revenues generated and the value of a soccer franchise?
- The null and alternative hypotheses ?
The P-value is 0.0000
- the test statistic is 52.4290
B. Construct a 95% confidence interval estimate of the mean value of all soccer franchises that generate $300 million of annual revenue.
(533.107,1038.192)
C. Construct a 95% prediction interval of the value of an individual soccer franchise that generates $300 million of annual revenue.
(-320.564,1891.864)
.................................................
The given data is:
Revenue($mil) | Value($mil) |
554 | 2806 |
676 | 3437 |
371 | 1333 |
628 | 3202 |
559 | 1852 |
312 | 691 |
342 | 858 |
355 | 851 |
394 | 869 |
219 | 482 |
258 | 579 |
224 | 513 |
516 | 414 |
203 | 347 |
156 | 329 |
177 | 326 |
162 | 307 |
332 | 599 |
411 | 863 |
157 | 296 |