In: Finance
2. Company XYZ has the following FCF:
Year 1 D1 = $ 0.5
Year 2 D2 = $ 1
Year 3 D3 = $ 1.5
Year 4 D4 = $ 1.5
Year 5 D5 = $ 2.0
Dividend grows at 6% after year 5
Suppose the required return is 8%. How much is the common stock price for this company?
| FCF0 | FCF in Year 0 | $25 | million | |||||
| g | Constant growth rate=8% | 0.08 | ||||||
| FCF1=FCF0*(1+g) | FCF in Year 1=25*(1+0.08) | $27.00 | million | |||||
| R | Required Return =WACC=18% | 0.18 | ||||||
| EV=F1/(R-g) | Enterprise Value=27/(0.18-0.08) | $270.00 | million | |||||
| Enterprise Value+Cash + Short term investment=Debt+Preference Capital+Common Equity | ||||||||
| 270+7=12+1+Common Equity | ||||||||
| Common Equity=277-13= | $264 | million | ||||||
| Number of shares | 10 | million | ||||||
| Stock Price =264/10= | $26.40 | |||||||
| Present Value of Cash Flow=Cah Flow/((1+R)^N) | ||||||||
| R=Required Return=8%=0.08 | ||||||||
| D6=Dividend in year6=D5*1.06 | ||||||||
| D6=Dividend in year6=2.0*1.06 | $2.12 | |||||||
| Price in Year 5=D6/(0.08-0.06) | $106.00 | |||||||
| N | CF | PV=CF/(1.08^N) | ||||||
| Year | Cash Flow | Present Value | ||||||
| D1 | 1 | $0.50 | $0.46 | |||||
| D2 | 2 | $1.00 | $0.86 | |||||
| D3 | 3 | $1.50 | $1.19 | |||||
| D4 | 4 | $1.50 | $1.10 | |||||
| D5 | 5 | $2.00 | $1.36 | |||||
| D5 | 5 | $106.00 | $72.14 | |||||
| SUM | $77.12 | |||||||
| Current Price of Common Stock=P0= | $77.12 | |||||||