Question

In: Statistics and Probability

Consider a random sample of size 14 from a normal populationwith expected value μ and...

Consider a random sample of size 14 from a normal population with expected value μ and variance σ2 . Given x̄ = 43.4 and s2 = 186, a 95% confidence interval for μ is given by  

Solutions

Expert Solution

Mean = 43.4

Sample size (n) = 14

Confidence interval(in %) = 95

Since we know that

Required confidence interval =

Required confidence interval = (43.4-7.8176, 43.4+7.8176)

Required confidence interval = (35.5824, 51.2176)


Related Solutions

A random sample of size n1 = 14 is selected from a normal population with a...
A random sample of size n1 = 14 is selected from a normal population with a mean of 74 and a standard deviation of 6. A second random sample of size n2 = 9 is taken from another normal population with mean 70 and standard deviation 14. Let X¯1and X¯2 be the two sample means. Find: (a) The probability that X¯1-X¯2 exceeds 3. (b) The probability that 4.4 ≤X¯1-X¯2≤ 5.4.
A simple random sample of size n=49 is obtained from a population with μ=78 and σ=14....
A simple random sample of size n=49 is obtained from a population with μ=78 and σ=14. ​ (b) What isP (x>81)​? ​(c) What is (P x≤73​)? ​ (d) What is P( 76.8 less than x overbar less than 81.2)
A sample of size n = 16 is made from a normal distribution with mean μ....
A sample of size n = 16 is made from a normal distribution with mean μ. It turns out that the sample mean is x = 23 and the sample standard deviation is s = 6. Construct a 90% confidence interval for μ.
A random sample of size n = 55 is taken from a population with mean μ...
A random sample of size n = 55 is taken from a population with mean μ = −10.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard error" to 4 decimal places.) b. What is the probability that...
A simple random sample of size n = 15 is obtained from a population with μ...
A simple random sample of size n = 15 is obtained from a population with μ = 97 and σ = 23. Enter your answer as an area under the curve with 4 decimal places. P(x⎯⎯⎯ ≤ 94)
A random sample of size n = 50 is taken from a population with mean μ...
A random sample of size n = 50 is taken from a population with mean μ = −9.5 and standard deviation σ = 2. [You may find it useful to reference the z table.] a. Calculate the expected value and the standard error for the sampling distribution of the sample mean. (Negative values should be indicated by a minus sign. Round "expected value" to 1 decimal place and "standard deviation" to 4 decimal places.) Expected Value= Standard Error= b. What...
A random sample of n =100 is selected from a normal population with mean μ =...
A random sample of n =100 is selected from a normal population with mean μ = 24 and standard deviation σ = 1.25. Find the probability that  is less than 24.3
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution,...
Suppose X1, . . . , Xn is a random sample from the Normal(μ, σ2) distribution, where μ is unknown but σ2 is known, and it is of interest to test H0: μ = μ0 versus H1: μ ̸= μ0 for some value μ0. The R code below plots the power curve of the test Reject H0 iff |√n(X ̄n − μ0)/σ| > zα/2 for user-selected values of μ0, n, σ, and α. For a sequence of values of μ,...
A random sample of size 15 is taken from a population assumed to be normal, with...
A random sample of size 15 is taken from a population assumed to be normal, with sample mean = 1.2 and sample variance = 0.6. Calculate a 95 percent confidence interval for population mean.
A random sample of size n1 = 16 is selected from a normal population with a...
A random sample of size n1 = 16 is selected from a normal population with a mean of 74 and a standard deviation of 9. A second random sample of size n2 = 7 is taken from another normal population with mean 68 and standard deviation 11. Let X1and X2 be the two sample means. Find: (a) The probability that X1-X2 exceeds 4. (b) The probability that 4.8 ≤X1-X2≤ 5.6. Round your answers to two decimal places (e.g. 98.76).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT