Question

In: Physics

4 questions: 1). A 5 cm spring is suspended with a mass of 2.417 g attached...

4 questions:

1). A 5 cm spring is suspended with a mass of 2.417 g attached to it which extends the spring by 2.409 cm. The same spring is placed on a frictionless flat surface and charged beads are attached to each end of the spring. With the charged beads attached to the spring, the spring's extension is 0.259 cm. What are the charges of the beads?

2). Two equally charged, 1.862 g spheres are placed with 3.188 cm between their centers. When released, each begins to accelerate at 261.446 m/s2. What is the magnitude of the charge on each sphere? Express your answer in microCoulombs.

3).A +3 nC charge is located at (0,11.90) cm and a -8nC charge is located (3.38, 0) cm.Where would a -8 nC charge need to be located in order that the electric field at the origin be zero? Find the distance r from the origin of the third charge.

4). Two equally charged, 1.862 g spheres are placed with 3.188 cm between their centers. When released, each begins to accelerate at 261.446 m/s2. What is the magnitude of the charge on each sphere? Express your answer in microCoulombs.

Solutions

Expert Solution


Related Solutions

1. A mass weighing 10 lbs. is attached to a spring suspended from the ceiling. The...
1. A mass weighing 10 lbs. is attached to a spring suspended from the ceiling. The mass will stretch the spring 6 inches. If the mass is pulled 5 inches below its equilibrium point and given an initial upward velocity of 0.3 ft./sec. and if damping forces are neglected, then what is the equation of motion of the mass? What is the amplitude of the motion? 2. A 980-newton force stretches a spring 0.4 meters. If a 200 kg mass...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm...
A mass m = 1 kg is suspended from a spring that is stretched 1 cm under the influence of the weight of this mass. Now a periodic force is applied external of F (t) = 200 cos (vt) on the mass, which was initially in static balance. Disregarding all friction, get a relationship for position of the mass as a function of time, x (t). Also determine the value of ω which will cause resonance to occur
1. A 1 kilogram mass is attached to a spring with a spring constant of 4...
1. A 1 kilogram mass is attached to a spring with a spring constant of 4 N/m. Write the equation of motion if the spring is stretched 25 cm below the equilibrium position and released. a) Suppose the system experiences a constant forcing function downwards of 4 N. (Note that one would need to divide by the mass, but the mass is 1 kg so we don’t see a difference here.) Solve the non-homogeneous equation. (Keep everything else about the...
1. A 50-cm-long spring is suspended from the ceiling. A 230g mass is connected to the...
1. A 50-cm-long spring is suspended from the ceiling. A 230g mass is connected to the end and held at rest with the spring unstretched. The mass is released and falls, stretching the spring by 18cm before coming to rest at its lowest point. It then continues to oscillate vertically. a. What is the spring constant? (K=) b. What is the amplitude of the oscillation? c. What is the frequency of the oscillation? 2. Suppose the free-fall accelaration at some...
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that...
A 1-kg mass stretches a spring 20 cm. The system is attached to a dashpot that imparts a damping force equal to 14 times the instantaneous velocity of the mass. Find the equation of motion if the mass is released from equilibrium with an upward velocity of 3 m/sec. SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB CODE (SECOND ORDER DIFFERENTIAL EQUATIONS) SOLVE THIS USING MATLAB...
An object with a mass m = 51.6 g is attached to a spring with a...
An object with a mass m = 51.6 g is attached to a spring with a force constant k = 17.3 N/m and released from rest when the spring is stretched 36.2 cm. If it is oscillating on a horizontal frictionless surface, determine the velocity of the mass when it is halfway to the equilibrium position.
A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm.
A body whose mass is 1.82 kg is suspended from a spring of negligible mass , and is found to stretch the spring 3.12 cm. (i) What is the force constant of the spring? (ii) What is the period of oscillation of the body, if pulled down and released? (iii) What would be the period of a body weighing 3.63 kg, hanging from the same spring?
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in....
2. A 6-lb weight is attached to a vertically suspended spring that it stretches 4 in. and to adashpot that provides 1.5 lb of resistance for every foot per second of velocity.(a) If the weight is pulled down 1 ft below its static equilibrium position and then released from rest at time t = 0, find its position function .(b) Find the frequency, time-varying amplitude, and phase angle of the motion.(Give exact answers for both parts.
A mass m = 1 kg is attached to a spring with constant k = 4...
A mass m = 1 kg is attached to a spring with constant k = 4 N/m and a dashpot with variable damping coefficient c. If the mass is to be pulled 5 m beyond its equilibrium (stretching the spring) and released with zero velocity, what value of c ensures that the mass will pass through the equilibrium position and compress the spring exactly 1 m before reversing direction? c =
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in...
A mass of 50 g stretches a spring 3.828125 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 50 cms, and if there is no damping, determine the position u of the mass at any time t. Enclose arguments of functions in parentheses. For example, sin(2x). Assume g=9.8 ms2. Enter an exact answer. u(t)=     m When does the mass first return to its equilibrium position? Enter an exact answer. t=     s
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT