Question

In: Physics

A solid box of 200 g mass, is pulled up the frictionless inclined surface of length...

A solid box of 200 g mass, is pulled up the frictionless inclined surface of length 150 cm and height of 75 cm. How much the work done by the pulling force in moving the box up the end of the inclined surface

Solutions

Expert Solution


Related Solutions

A solid box of 200 g mass, is pulled up the frictionless inclined surface of length...
A solid box of 200 g mass, is pulled up the frictionless inclined surface of length 150 cm and height of 75 cm. How much the work done by the pulling force in moving the box up the end of the inclined surface?
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an...
A box of mass ?=20.5 kg is pulled up a ramp that is inclined at an angle ?=19.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is ?k=0.305 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of ?=2.89 m/s2 , calculate the tension ?T in the rope. Use ?=9.81 m/s2 for the acceleration due to gravity.
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an...
A box of mass m=19.0 kg is pulled up a ramp that is inclined at an angle θ=15.0∘ angle with respect to the horizontal. The coefficient of kinetic friction between the box and the ramp is μk=0.295 , and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of a=3.09 m/s2, calculate the tension FT in the rope. Use g=9.81 m/s2 for the acceleration due to gravity.
A 335 kg box is pulled 6.00 m up a 30° frictionless, inclined plane by an...
A 335 kg box is pulled 6.00 m up a 30° frictionless, inclined plane by an external force of 5425 N that acts parallel to the plane. Calculate the work done by the external force. Calculate the work done by gravity. Calculate the work done by the normal force.
A box with mass m = 2.2kg on an inclined frictionless surface is released from rest...
A box with mass m = 2.2kg on an inclined frictionless surface is released from rest from a height h = 2.35 m . After reaching the bottom of the incline the box slides with friction (coefficient of kinetic friction = 1.2) along a horizontal surface until coming to a rest after a distance d. 1. Draw a free body diagram for the box while it is on the incline. Clearly label all forces with standard names. 2. Draw a...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0°...
A 5.35-kg box is pulled up a ramp that is inclined at an angle of 33.0° with respect to the horizontal, as shown below. The coefficient of kinetic friction between the box and the ramp is 0.165, and the rope pulling the box is parallel to the ramp. If the box accelerates up the ramp at a rate of 2.09 m/s2, what must the tension FT in the rope be? Use g = 9.81 m/s2 for the acceleration due to...
A box with mass 1.60 kg is being pulled across a rough surface at a constant...
A box with mass 1.60 kg is being pulled across a rough surface at a constant speed with a coefficient of kinetic friction µk = 0.310. The pulling force has a magnitude of 12.1 N and is directed at an angle 39.7 degrees above horizontal. If the box is dragged a distance of 11.2 m, what is the total energy lost to friction? (Hint: be sure to account for the upward component of the pulling force, and note that the...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to...
A mass; m1 = 64 g, sits on a frictionless horizontal surface, and is attached to a spring of spring constant k = 51 N/m. The other end of the horizontal spring is attached to a wall; the system is in equilibrium. Another mass; m2 = 18 g, strikes the stationary mass m1, and sticks to it. As a result, the spring is compressed by a distance of 24.5 cm before the masses come to a momentary stop. a) How...
A 200 g hockey puck is launched up a metal ramp that is inclined at a...
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the puck and the ramp are μs = 0.40 and μk = 0.30, and the puck's initial velocity at the base is 3.8 m/s parallel to the sloping surface of the ramp. What speed does the puck have when it slides back down to its starting point? I know that the answer is 2.1...
A 200 g hockey puck is launched up a metal ramp that is inclined at a...
A 200 g hockey puck is launched up a metal ramp that is inclined at a 30° angle. The coefficients of static and kinetic friction between the hockey puck and the metal ramp are #5 = 0.40 and pk = 0.30, respectively. The puck's initial speed is 14.9 m/s. What speed does it have when it slides back down to its starting point?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT