In: Statistics and Probability
An electronic company in the recruitment of employees, conducts two stages of selection, namely the interview stage and psychological testing. But because the cost of psychological testing is increasingly expensive, the company plans to cancel the psychological testing process if the results of the interview are good enough. For this reason, the company assumes a positive correlation between interviews and psychological tests. This means that workers who are hired usually have high scores on interview tests and psychological tests. For this reason, human resource managers are instructed to test whether the hypothesis is correct. Therefore, the Human Resources Manager took interviews and psychological tests from 35 applicants. Help these human resource managers by using the Spearman Correlation Test with an error rate of 0.01 !
Job Applicant | Score on Interview test | Score on psychological test |
1 |
81 |
113 |
2 |
88 |
88 |
3 |
55 |
76 |
4 |
83 |
129 |
5 |
78 |
99 |
6 |
93 |
142 |
7 |
65 |
93 |
8 |
87 |
136 |
9 |
95 |
82 |
10 |
76 |
91 |
11 |
60 |
83 |
12 |
85 |
96 |
13 |
93 |
126 |
14 |
66 |
108 |
15 |
90 |
95 |
16 |
69 |
65 |
17 |
87 |
96 |
18 |
68 |
101 |
19 |
81 |
111 |
20 |
84 |
121 |
21 |
82 |
83 |
22 |
90 |
79 |
23 |
63 |
71 |
24 |
78 |
108 |
25 |
73 |
68 |
26 |
79 |
121 |
27 |
72 |
109 |
28 |
95 |
121 |
29 |
81 |
140 |
30 |
87 |
132 |
31 |
93 |
135 |
32 |
85 |
143 |
33 |
91 |
118 |
34 |
94 |
147 |
35 |
94 |
138 |
Here we want to test the company's claim that there is a positive correlation between interviews and psychological tests.
The score on interview test and the score on psychological tests of 35 applicants is given
Let xi's be the score on interview test and yi's be the score on psychological test
Job Applicant | Score on an Interview test | Score on a psychological test |
1 | 81 | 113 |
2 | 88 | 88 |
3 | 55 | 76 |
4 | 83 | 129 |
5 | 78 | 99 |
6 | 93 | 142 |
7 | 65 | 93 |
8 | 87 | 136 |
9 | 95 | 82 |
10 | 76 | 91 |
11 | 60 | 83 |
12 | 85 | 96 |
13 | 93 | 126 |
14 | 66 | 108 |
15 | 90 | 95 |
16 | 69 | 65 |
17 | 87 | 96 |
18 | 68 | 101 |
19 | 81 | 111 |
20 | 84 | 121 |
21 | 82 | 83 |
22 | 90 | 79 |
23 | 63 | 71 |
24 | 78 | 108 |
25 | 73 | 68 |
26 | 79 | 121 |
27 | 72 | 109 |
28 | 95 | 121 |
29 | 81 | 140 |
30 | 87 | 132 |
31 | 93 | 135 |
32 | 85 | 143 |
33 | 91 | 118 |
34 | 94 | 147 |
35 | 94 | 138 |
Now obtaining the correlation coefficient between interviews and psychological tests.(r)
Obtaining , and
x | y | ||||||
1 | 81 | 113 | -0.171428571 | 5.457143 | 0.029388 | 29.78041 | -0.93551 |
2 | 88 | 88 | 6.828571429 | -19.5429 | 46.62939 | 381.9233 | -133.45 |
3 | 55 | 76 | -26.17142857 | -31.5429 | 684.9437 | 994.9518 | 825.5216 |
4 | 83 | 129 | 1.828571429 | 21.45714 | 3.343673 | 460.409 | 39.23592 |
5 | 78 | 99 | -3.171428571 | -8.54286 | 10.05796 | 72.98041 | 27.09306 |
6 | 93 | 142 | 11.82857143 | 34.45714 | 139.9151 | 1187.295 | 407.5788 |
7 | 65 | 93 | -16.17142857 | -14.5429 | 261.5151 | 211.4947 | 235.1788 |
8 | 87 | 136 | 5.828571429 | 28.45714 | 33.97224 | 809.809 | 165.8645 |
9 | 95 | 82 | 13.82857143 | -25.5429 | 191.2294 | 652.4376 | -353.221 |
10 | 76 | 91 | -5.171428571 | -16.5429 | 26.74367 | 273.6661 | 85.5502 |
11 | 60 | 83 | -21.17142857 | -24.5429 | 448.2294 | 602.3518 | 519.6073 |
12 | 85 | 96 | 3.828571429 | -11.5429 | 14.65796 | 133.2376 | -44.1927 |
13 | 93 | 126 | 11.82857143 | 18.45714 | 139.9151 | 340.6661 | 218.3216 |
14 | 66 | 108 | -15.17142857 | 0.457143 | 230.1722 | 0.20898 | -6.93551 |
15 | 90 | 95 | 8.828571429 | -12.5429 | 77.94367 | 157.3233 | -110.736 |
16 | 69 | 65 | -12.17142857 | -42.5429 | 148.1437 | 1809.895 | 517.8073 |
17 | 87 | 96 | 5.828571429 | -11.5429 | 33.97224 | 133.2376 | -67.2784 |
18 | 68 | 101 | -13.17142857 | -6.54286 | 173.4865 | 42.80898 | 86.17878 |
19 | 81 | 111 | -0.171428571 | 3.457143 | 0.029388 | 11.95184 | -0.59265 |
20 | 84 | 121 | 2.828571429 | 13.45714 | 8.000816 | 181.0947 | 38.06449 |
21 | 82 | 83 | 0.828571429 | -24.5429 | 0.686531 | 602.3518 | -20.3355 |
22 | 90 | 79 | 8.828571429 | -28.5429 | 77.94367 | 814.6947 | -251.993 |
23 | 63 | 71 | -18.17142857 | -36.5429 | 330.2008 | 1335.38 | 664.0359 |
24 | 78 | 108 | -3.171428571 | 0.457143 | 10.05796 | 0.20898 | -1.4498 |
25 | 73 | 68 | -8.171428571 | -39.5429 | 66.77224 | 1563.638 | 323.1216 |
26 | 79 | 121 | -2.171428571 | 13.45714 | 4.715102 | 181.0947 | -29.2212 |
27 | 72 | 109 | -9.171428571 | 1.457143 | 84.1151 | 2.123265 | -13.3641 |
28 | 95 | 121 | 13.82857143 | 13.45714 | 191.2294 | 181.0947 | 186.0931 |
29 | 81 | 140 | -0.171428571 | 32.45714 | 0.029388 | 1053.466 | -5.56408 |
30 | 87 | 132 | 5.828571429 | 24.45714 | 33.97224 | 598.1518 | 142.5502 |
31 | 93 | 135 | 11.82857143 | 27.45714 | 139.9151 | 753.8947 | 324.7788 |
32 | 85 | 143 | 3.828571429 | 35.45714 | 14.65796 | 1257.209 | 135.7502 |
33 | 91 | 118 | 9.828571429 | 10.45714 | 96.60082 | 109.3518 | 102.7788 |
34 | 94 | 147 | 12.82857143 | 39.45714 | 164.5722 | 1556.866 | 506.1788 |
35 | 94 | 138 | 12.82857143 | 30.45714 | 164.5722 | 927.6376 | 390.7216 |
Total | 2841 | 3764 | -2.27374E-13 | -5.7E-14 | 4052.971 | 19424.69 | 4902.743 |
Mean | 81.171429 | 107.5428571 | |||||
From the calculation
= 81.171429
= 107.5428571
= 4052.971
, = 19424.69
and = 4902.743
The correlation coefficient is given as (Spearman correlation formula)
= 0.552554785
Rounding off
r= 0.5526
Now for testing the significance of correlation coefficient
Let be the population correlation coefficient.
Hence the null hypothesis is given as
There is not signifiant correlation
There is not signifiant positive correlation
The test statistic is given is
= 0.5526 /0.1450844
= 3.808817
Rounding off
= 3.809
t = 0.08017
Obtaining the critical value with
df = n-2
= 33
From one tailed t -table
Dicision rule :
Reject the null hypothesis if t (calculated) > t(critical value)
Since t (calculated) = 3.809 > t(critical value) = 2.4448
We reject the null hypothesis.
Hence there is sufficient evidence to conclude that there is significant positive correlation
(
Verifying using R-output
)