Question

In: Statistics and Probability

In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement

In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement. For a $1 bet, a player chooses one set of four numbers. To win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one ticket?

Solutions

Expert Solution

An urn contains balls numbered 1 to 34

From the urn 4 balls are randomly chosen.

All four numbers must match to win.

Probability that first number will match = 4/34

Remaining balls in the urn after drawing the first ball are 33

Probability that second number will match = 3/33

Remaining balls in the urn after drawing the second ball are 32

Probability that third number will match = 2/32

Remaining balls in the urn after drawing the third ball are 31

Probability that fourth number will match = 1/31

Therefore, the probability of matching all four numbers to win this lottery with one ticket is

= (4/34) * (3/33) * (2/32) * (1/31)

= 0.000021


Related Solutions

In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4...
In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4 balls are chosen​ randomly, without replacement. For a​ $1 bet, a player chooses one set of four numbers. To​ win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one​ ticket?
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $20 for each red ball drawn and you lose $10 for each green ball drawn. Compute the expected value of your winnings.
(Urn Poker) An urn contains 8 red balls numbered 1 through 8, 8 yellow balls numbered...
(Urn Poker) An urn contains 8 red balls numbered 1 through 8, 8 yellow balls numbered 1 through 8, 8 green balls numbered 1 through 8, and 8 black balls numbered 1 through 8. If 4 balls are randomly selected, find the probability of getting: three of a kind. (Three of a kind is 3 balls of one denomination and a fourth ball of a different denomination. e.g., 5,5,5,2) (c) two pairs. (A pair is two balls of the same...
An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly...
An urn contains 7 red and 10 blue balls. If 4 balls are to be randomly selected without replacement, what is the probability that the first 2 selected are red and the last 2 selected are blue? Explain each step ?
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and...
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and without replacement. Let A be the event that “Exactly two odd-numbered balls are drawn and they occur on odd-numbered draws from the urn.” What is the probability of event A? Please explain Thank you
Two balls are drawn, without replacement, from a bag containing 11 red balls numbered 1-11 and...
Two balls are drawn, without replacement, from a bag containing 11 red balls numbered 1-11 and 5 white balls numbered 12-16. (Enter your probabilities as fractions) (a) What is the probability that the second ball is red, given that the first ball is white? (b) What is the probability that both balls are even numbered? (c) What is the probability that the first ball is red and even-numbered and the second ball is even numbered?
Q2. Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2...
Q2. Two balls are chosen randomly from an urn containing 8 white, 4 black, and 2 orange balls. Suppose that we win $2 for each black ball selected and we lose $1 for each white ball selected. Let X denote our winnings. What are the possible values of X, and what are the probabilities associated with each value i.e. create a discrete probability distribution table for winning amount. Compute the expected value of winnings and standard deviation of winnings. You...
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let...
An urn contains 4 red balls and 3 green balls. Two balls are sampled randomly. Let W denote the number of green balls in the sample when the draws are done with replacement. Give the possible values and the PMF of W.
An urn contains six white balls and four black balls. Two balls are randomly selected from...
An urn contains six white balls and four black balls. Two balls are randomly selected from the urn. Let X represent the number of black balls selected. (a) Identify the probability distribution of X. State the values of the parameters corresponding to this distribution. (b) Compute P(X = 0), P(X = 1), and P(X = 2). (c) Consider a game of chance where you randomly select two balls from the urn. You then win $2 for every black ball selected...
An urn contains 5 white and 8 red balls. Assume that white balls are numbered. Suppose...
An urn contains 5 white and 8 red balls. Assume that white balls are numbered. Suppose that 3 balls are chosen with replacement from that urn. Let Yi = 1 if if the ith white ball is selected and Yi = 0 otherwise, i = 1,2: Find the EXPECTED VALUE of Yi given that a) Y2 = 1; b) Y2 = 0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT