Question

In: Statistics and Probability

In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4...

In a certain​ lottery, an urn contains balls numbered 1 to 37. From this​ urn, 4 balls are chosen​ randomly, without replacement. For a​ $1 bet, a player chooses one set of four numbers. To​ win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one​ ticket?

Solutions

Expert Solution

Number of ways 4 balls are chosen​ randomly, without replacement (when order in which the balls are selected does not matter)  = 37C4

= 37! / [(37 - 4)! * 4!]

= 37! / (33! * 4!)

= (37 * 36 * 35 * 34) / (4 * 3 * 2 * 1)

= 66045

For a​ $1 bet, a player can choose only one set of four numbers out of 66045 sets.

So, the probability of winning this lottery with one​ ticket = 1 / 66045


Related Solutions

In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement
In a certain lottery, an urn contains balls numbered 1 to 34. From this urn, 4 balls are chosen randomly, without replacement. For a $1 bet, a player chooses one set of four numbers. To win, all four numbers must match those chosen from the urn. The order in which the balls are selected does not matter. What is the probability of winning this lottery with one ticket?
(Urn Poker) An urn contains 8 red balls numbered 1 through 8, 8 yellow balls numbered...
(Urn Poker) An urn contains 8 red balls numbered 1 through 8, 8 yellow balls numbered 1 through 8, 8 green balls numbered 1 through 8, and 8 black balls numbered 1 through 8. If 4 balls are randomly selected, find the probability of getting: three of a kind. (Three of a kind is 3 balls of one denomination and a fourth ball of a different denomination. e.g., 5,5,5,2) (c) two pairs. (A pair is two balls of the same...
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and...
An urn contains 10 balls numbered 1 through 10. Five balls are drawn at random and without replacement. Let A be the event that “Exactly two odd-numbered balls are drawn and they occur on odd-numbered draws from the urn.” What is the probability of event A? Please explain Thank you
An urn contains 5 white and 8 red balls. Assume that white balls are numbered. Suppose...
An urn contains 5 white and 8 red balls. Assume that white balls are numbered. Suppose that 3 balls are chosen with replacement from that urn. Let Yi = 1 if if the ith white ball is selected and Yi = 0 otherwise, i = 1,2: Find the EXPECTED VALUE of Yi given that a) Y2 = 1; b) Y2 = 0.
An urn contains 4 white balls and 6 red balls. A second urn contains 8 white...
An urn contains 4 white balls and 6 red balls. A second urn contains 8 white balls and 2 red balls. An urn is selected, and a ball is randomly drawn from the selected urn. The probability of selecting the first urn is 0.7. If the ball is white, find the probability that the second urn was selected. (Round your answer to three decimal places.)
An urn contains 4 white balls and 6 red balls. A second urn contains 7 white...
An urn contains 4 white balls and 6 red balls. A second urn contains 7 white balls and 3 red balls. An urn is selected, and the probability of selecting the first urn is 0.1. A ball is drawn from the selected urn and replaced. Then another ball is drawn and replaced from the same urn. If both balls are white, what are the following probabilities? (Round your answers to three decimal places.) - (a) the probability that the urn...
A)In a certain state's lottery, 40 balls numbered 1 through 40 are placed in a machine...
A)In a certain state's lottery, 40 balls numbered 1 through 40 are placed in a machine and eight of them are drawn at random. If the eight numbers drawn match the numbers that a player had chosen, the player wins $1,000,000. In this lottery, the order in which the numbers are drawn does not matter. Compute the probability that you win the million-dollar prize if you purchase a single lottery ticket. Write your answer as a reduced fraction. PP(win) =    ...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from...
An urn contains 6 red balls and 4 green balls. Three balls are chosen randomly from the urn, without replacement. (a) What is the probability that all three balls are red? (Round your answer to four decimal places.) (b) Suppose that you win $20 for each red ball drawn and you lose $10 for each green ball drawn. Compute the expected value of your winnings.
Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls...
Urn 1 contains 8 green balls and 10 red balls. Urn 2 contains 7 green balls and 5 red balls. A die is rolled, if a 1 or 2 is rolled, a ball is chosen from urn 1, if a 3, 4, 5, or 6 is rolled, a balls is chosen from urn 2. What is the probability of selecting a green ball? Please show all work.
An urn contains four balls numbered 2, 2, 5 and 6. If a person selects a...
An urn contains four balls numbered 2, 2, 5 and 6. If a person selects a set of two balls at random, what is the expected value of the sum of the number of the balls?
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT