Question

In: Statistics and Probability

The random variable X has mean μ and standard deviation σ. A simple random sample of...

The random variable X has mean μ and standard deviation σ. A simple random sample of 50 values drawn from X has sample mean 14.7. Assuming the standard deviation is known to be 3.6, construct an 98% confidence interval for the value of μ. Put your answer in correct interval notation, (lower bound, upper bound), and round to three decimal places.

Solutions

Expert Solution

Solution :

Given that,

Point estimate = sample mean =   = 14.7

Population standard deviation =    = 3.6

Sample size = n =50

At 98% confidence level the z is ,

= 1 - 98% = 1 - 0.98 = 0.02

/ 2 = 0.02/ 2 = 0.01

Z/2 = Z0.01 = 2.326 ( Using z table    )

Margin of error = E = Z/2    * ( /n)

= 2.326 * (3.6 /  50 )

E= 1.1842
At 98% confidence interval estimate of the population mean
is,

- E < < + E

14.7 - 1.1842 <   < 14.7+ 1.1842

13.5158<   < 15.8842

( lower bound =13.516, upper bound=15.884)


Related Solutions

A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18....
A normal random variable x has mean μ = 1.8 and standard deviation σ = 0.18. Find the probabilities of these X-values. (Round your answers to four decimal places.) (a)     1.00 < X < 1.50 (b)     X > 1.39 (c)     1.45 < X < 1.60
1) A normal random variable x has an unknown mean μ and standard deviation σ =...
1) A normal random variable x has an unknown mean μ and standard deviation σ = 2. If the probability that x exceeds 4.6 is 0.8023, find μ. (Round your answer to one decimal place.) μ = 2) Answer the question for a normal random variable x with mean μ and standard deviation σ specified below. (Round your answer to four decimal places.) μ = 1.3 and σ = 0.19. Find P(1.50 < x < 1.71). P(1.50 < x <...
A. A normal random variable has an unknown mean μ and a standard deviation σ =...
A. A normal random variable has an unknown mean μ and a standard deviation σ = 2. If the probability that x exceeds 6.5 is .9732; find μ. B. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability of less than -2.73. C. A standard normal random variable has μ = 0 and a standard deviation σ = 1. Find the probability greater than 3.28. D. A standard normal random...
Let X be a random variable with mean μ and standard deviation σ. Consider a new...
Let X be a random variable with mean μ and standard deviation σ. Consider a new random variable Z, obtained by subtracting the constant μ from X and dividing the result by the constant σ: Z = (X –μ)/σ. The variable Z is called a standardised random variable. Use the laws of expected value and variance to show the following: a E(Z) = 0 b V (Z) = 1
Find the mean, μ, and standard deviation, σ, for a binomial random variable X. (Round all...
Find the mean, μ, and standard deviation, σ, for a binomial random variable X. (Round all answers for σ to three decimal places.) (a) n = 5, p = .50. μ = σ = (b) n = 1, p = 0.25. μ = σ = (c) n = 100, p = 0.95. μ = σ = (d) n = 20, p = .01. μ = σ =
Find the mean, μ, and standard deviation, σ, for a binomial random variable X. (Round all...
Find the mean, μ, and standard deviation, σ, for a binomial random variable X. (Round all answers for σ to three decimal places.) (a) n = 20, p = .50. μ = σ = (b) n = 1, p = 0.35. μ = σ = (c) n = 100, p = 0.80. μ = σ = (d) n = 30, p = .01. μ = σ =
A population has mean μ = 16 and standard deviation σ = 1.5. A random sample...
A population has mean μ = 16 and standard deviation σ = 1.5. A random sample of size n = 49 is selected. What is the probability that the sample mean is greater than 16.8? I got 3.73 for z-value. Please help
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7....
Assume that the random variable X is normally distributed, with mean μ=50 and standard deviation σ=7. compute the probability. P(57≤X≤66)
Given that x is a normal variable with mean μ = 49 and standard deviation σ...
Given that x is a normal variable with mean μ = 49 and standard deviation σ = 6.2, find the following probabilities. (Round your answers to four decimal places.) (a)  P(x ≤ 60) (b)  P(x ≥ 50) (c)  P(50 ≤ x ≤ 60)
Given that x is a normal variable with mean μ = 43 and standard deviation σ...
Given that x is a normal variable with mean μ = 43 and standard deviation σ = 6.9, find the following probabilities. (Round your answers to four decimal places.) (a) P(x ≤ 60) (b) P(x ≥ 50) (c) P(50 ≤ x ≤ 60)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT