In: Statistics and Probability
Consider the following data for two variables, x and y.
x | 9 | 32 | 18 | 15 | 26 |
---|---|---|---|---|---|
y | 9 | 19 | 21 | 17 | 22 |
(a) Develop an estimated regression equation for the data of the form ŷ = b0 + b1x. (Round b0 to two decimal places and b1 to three decimal places.)
ŷ =
Comment on the adequacy of this equation for predicting y. (Use α = 0.05.)
The high p-value and low coefficient of determination indicate that the equation is inadequate
(b) Develop an estimated regression equation for the data of the form ŷ = b0 + b1x + b2x2. (Round b0 to two decimal places and b1 to three decimal places and b2 to four decimal places.)
ŷ =
The low p-value and high coefficient of determination indicate that the equation is adequate.
(c) Use the model from part (b) to predict the value of y when x = 20. (Round your answer to two decimal places.)
a)
Excel > Data > Data Analysis > Regression
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.712443512 | |||||||
R Square | 0.507575758 | |||||||
Adjusted R Square | 0.343434343 | |||||||
Standard Error | 4.194753818 | |||||||
Observations | 5 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 1 | 54.41212121 | 54.41212121 | 3.092307692 | 0.176903591 | |||
Residual | 3 | 52.78787879 | 17.5959596 | |||||
Total | 4 | 107.2 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | 9.478787879 | 4.984739491 | 1.901561335 | 0.153395335 | -6.384877897 | 25.34245365 | -6.384877897 | 25.34245365 |
X | 0.406060606 | 0.230913598 | 1.758495861 | 0.176903591 | -0.32880952 | 1.140930732 | -0.32880952 | 1.140930732 |
Y = 9.48 + 0.406 * X
P value = 0.1769 > 0.05, R^2 = 0.5076, It is inadequate
b)
Y | X | X^2 |
9 | 9 | 81 |
19 | 32 | 1024 |
21 | 18 | 324 |
17 | 15 | 225 |
22 | 26 | 676 |
SUMMARY OUTPUT | ||||||||
Regression Statistics | ||||||||
Multiple R | 0.995531446 | |||||||
R Square | 0.991082859 | |||||||
Adjusted R Square | 0.982165718 | |||||||
Standard Error | 0.691345607 | |||||||
Observations | 5 | |||||||
ANOVA | ||||||||
df | SS | MS | F | Significance F | ||||
Regression | 2 | 106.2440825 | 53.12204125 | 111.1435692 | 0.008917141 | |||
Residual | 2 | 0.955917497 | 0.477958748 | |||||
Total | 4 | 107.2 | ||||||
Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
Intercept | -11.98263171 | 2.218603991 | -5.400978166 | 0.032613364 | -21.52851423 | -2.436749196 | -21.52851423 | -2.436749196 |
X | 2.856337856 | 0.238352303 | 11.98368054 | 0.006891472 | 1.830790668 | 3.881885043 | 1.830790668 | 3.881885043 |
X^2 | -0.059107565 | 0.005675962 | -10.41366526 | 0.009095693 | -0.083529257 | -0.034685873 | -0.083529257 | -0.034685873 |
Y = -11.98 + 2.856 * X - 0.0591 * X^2
P value = 0.0089 < 0.05, R^2 = 0.9911, it is adequate
c)
If X = 20
Y = -11.98 + 2.856 * 20 - 0.0591 * 20^2 = 21.50