Question

In: Statistics and Probability

The Probability Integral Transformation Theorem states the following: Let X have continuous cdf FX(x) and define...

The Probability Integral Transformation Theorem states the following: Let X have continuous cdf FX(x) and define the random variable U as U = FX(x). Then U is uniformly distributed on (0,1), i.e., P(U ≤ u) = u, 0 < u < 1. This theorem can be used to generate random variables with an arbitrary continuous distribution function F, if F ^−1 is explicitly known. To illustrate how the method works, you will generate 1,000 random numbers from an Exponential(λ) distribution with rate λ, by following the next 4 steps:

1. Write the c.d.f., FX(x), for X ∼ Exp(3), where 3 is the rate or inverse-scale parameter.

2. Find the inverse-cdf, F ^−1 X , where F ^−1 x (U) = X

3. Generate a uniform random variable U

4. Return X ← F ^−1 X (U)

Solutions

Expert Solution

We have pdf for Exponential() given as :

Step1 :

We have cdf for Exponential() given as :

For X ∼ Exp(3), where 3 is the rate or inverse-scale parameter.

Step 2:

Finding the inverse-cdf :

Step 3 :

Now, we generate 1000 values from U(0,1)

and find the 1000 random numbers from the Exponential(3) using the relation :

where i = 1,2,3,4,............1000

Step 4 :

So, Generated random numbers are :

Note : Since all 1000 values cannot be pasted here as answer cannot be longer than 65000 characters, First 100 values are pasted.

S.no Ui xi = (1/-3)*ln(1-Ui)
1 0.2617 0.4468
2 0.8781 0.0433
3 0.2308 0.4888
4 0.9478 0.0179
5 0.8306 0.0619
6 0.5039 0.2285
7 0.7492 0.0962
8 0.0273 1.2001
9 0.2206 0.5039
10 0.8487 0.0547
11 0.9693 0.0104
12 0.2071 0.5249
13 0.3503 0.3497
14 0.8838 0.0412
15 0.2960 0.4058
16 0.8159 0.0678
17 0.1033 0.7568
18 0.8499 0.0542
19 0.8337 0.0606
20 0.5602 0.1931
21 0.7996 0.0745
22 0.9669 0.0112
23 0.8827 0.0416
24 0.1610 0.6088
25 0.9121 0.0307
26 0.4105 0.2968
27 0.6326 0.1527
28 0.3978 0.3073
29 0.5574 0.1948
30 0.9640 0.0122
31 0.8339 0.0605
32 0.2181 0.5077
33 0.7942 0.0768
34 0.2486 0.4639
35 0.7307 0.1046
36 0.0666 0.9029
37 0.2590 0.4503
38 0.9416 0.0201
39 0.0323 1.1440
40 0.0927 0.7930
41 0.1711 0.5885
42 0.8854 0.0406
43 0.2094 0.5212
44 0.3892 0.3146
45 0.2379 0.4786
46 0.4974 0.2328
47 0.8916 0.0382
48 0.9228 0.0268
49 0.4920 0.2364
50 0.3830 0.3199
51 0.6516 0.1428
52 0.3083 0.3923
53 0.5915 0.1750
54 0.5614 0.1924
55 0.9539 0.0157
56 0.0858 0.8185
57 0.6132 0.1630
58 0.2081 0.5232
59 0.5519 0.1981
60 0.6563 0.1404
61 0.8731 0.0452
62 0.3216 0.3782
63 0.1126 0.7280
64 0.5306 0.2113
65 0.8016 0.0737
66 0.2200 0.5047
67 0.3518 0.3482
68 0.0501 0.9978
69 0.4080 0.2988
70 0.2744 0.4310
71 0.4599 0.2589
72 0.2342 0.4838
73 0.3637 0.3372
74 0.7841 0.0811
75 0.1000 0.7674
76 0.9104 0.0313
77 0.2352 0.4825
78 0.4010 0.3046
79 0.7597 0.0916
80 0.7845 0.0809
81 0.8998 0.0352
82 0.0098 1.5419
83 0.7373 0.1016
84 0.6061 0.1669
85 0.6733 0.1319
86 0.4678 0.2532
87 0.5447 0.2025
88 0.0865 0.8158
89 0.1825 0.5670
90 0.1144 0.7228
91 0.0067 1.6663
92 0.7242 0.1076
93 0.5125 0.2228
94 0.4523 0.2645
95 0.8397 0.0582
96 0.1951 0.5447
97 0.6610 0.1380
98 0.9107 0.0312
99 0.9891 0.0037
100 0.4639 0.2560

Related Solutions

Let X be a continuous random variable with a probability density function fX (x) = 2xI...
Let X be a continuous random variable with a probability density function fX (x) = 2xI (0,1) (x) and let it be the function´ Y (x) = e −x a. Find the expression for the probability density function fY (y). b. Find the domain of the probability density function fY (y).
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a...
1) Let X be a continuous random variable. What is true about fX(x)fX(x)? fX(2) is a probability. fX(2) is a set. It can only take values between 0 and 1 as input. fX(2) is a number. 2) Let X be a continuous random variable. What is true about FX(x)FX(x)? FX(x) is a strictly increasing function. It decreases to zero as x→∞x→∞. FX(2) is a probability. FX(x) can be any real number.
(A universal random number generator.)Let X have a continuous, strictly increasing cdf F. Let Y =...
(A universal random number generator.)Let X have a continuous, strictly increasing cdf F. Let Y = F(X). Find the density of Y. This is called the probability integral transform. Now let U ∼ Uniform(0,1) and let X = F−1(U). Show that X ∼ F. Now write a program that takes Uniform (0,1) random variables and generates random variables from an Exponential (β) distribution
The probability density function of the continuous random variable X is given by fX (x) =...
The probability density function of the continuous random variable X is given by fX (x) = kx, (0 <= x <2) = k (4-x), (2 <= x <4) = 0, (otherwise) 1) Find the value of k 2)Find the mean of m 3)Find the Dispersion σ² 4)Find the value of Cumulative distribution function FX(x)
1. Let X be a random variable with probability density function fX given by fX(x) =...
1. Let X be a random variable with probability density function fX given by fX(x) = γαγ/ (x + α)^γ+1 , x ≥ 0, 0, x < 0, where α > 0 and γ > 0. (a) Find the cumulative distribution function (cdf) FX of X. (b) Let Y = log(X+α /α) . Find the cdf of Y and identify the distribution. (c) How could a realisation of X be generated from an R(0,1) random number generator? (d) Let Z...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 <...
2. Let X be a continuous random variable with PDF ?fx(x)= cx(1 − x), 0 < x < 1, 0 elsewhere. (a) Find the value of c such that fX(x) is indeed a PDF. (b) Find P(−0.5 < X < 0.3). (c) Find the median of X.
. Let X and Y be a random variables with the joint probability density function fX,Y...
. Let X and Y be a random variables with the joint probability density function fX,Y (x, y) = { 1, 0 < x, y < 1 0, otherwise } . a. Let W = max(X, Y ) Compute the probability density function of W. b. Let U = min(X, Y ) Compute the probability density function of U. c. Compute the probability density function of X + Y ..
Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x <...
Let X have the pdf fX(x) = 3(1 − x) 2 , 0 < x < 1. (a) Find the pdf of Y = (1 − X) 3 . Specify the distribution of Y (name and parameter values). (b) Find E(Y ) and Var(Y ).
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x)....
Let the continuous random variable X have probability density function f(x) and cumulative distribution function F(x). Explain the following issues using diagram (Graphs) a) Relationship between f(x) and F(x) for a continuous variable, b) explaining how a uniform random variable can be used to simulate X via the cumulative distribution function of X, or c) explaining the effect of transformation on a discrete and/or continuous random variable
Let X and Y be two continuous random variables with the joint probability density function of...
Let X and Y be two continuous random variables with the joint probability density function of for 0 < x < 2, 0 < y < 2, x + y < 1,where c is a constant. (In all the following answers, you do NOT need to find what the value of c is; just treat it as a number.) (a) Write out the marginal distribution of Y. (b) P(Y < 1/3) = ? (c) P(X < 1.5, Y < 0.5)=...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT