Question

In: Statistics and Probability

Using the three difference equations listed of the SIR model, create a 3 column population model...

  1. Using the three difference equations listed of the SIR model, create a 3 column population model in Excel which shows the population from time step 1 to time step 300. Let your starting populations be: S[t] = 99, I[t] = 1, R[t] = 0. Let a = 0.001, and let γ = 0.05.

a. Create a line graph showing the populations of S[t], I[t], and R[t] through time.

b. Holding all other variables constant, try increasing and decreasing the infection coefficient a. How does changing the value of a affect the behavior of the model?

c. Holding all other variables constant, vary the infection coefficient γ (by increasing and decreasing the value). How does changing the value of γ affect the behavior of the model? Why?

Solutions

Expert Solution

1. SIR model using Excel sheet

N= total number of individuals. Which will be constant.
T= Time step
S = Susceptible
I= Infected
R= Recovered

T S I R N
1 99 1 0 100
2 98.95 1.049 0.001 100
3 98.89758 1.100375 0.002049 100
4 98.84261 1.154236 0.003149 100
5 98.78499 1.210702 0.004304 100
6 98.72459 1.269895 0.005514 100
7 98.66127 1.331943 0.006784 100
8 98.5949 1.39698 0.008116 100
9 98.52534 1.465146 0.009513 100
10 98.45243 1.536587 0.010978 100
11 98.37603 1.611455 0.012515 100
12 98.29596 1.689909 0.014126 100
13 98.21207 1.772113 0.015816 100
14 98.12417 1.858242 0.017588 100
15 98.03208 1.948474 0.019447 100
16 97.93561 2.042996 0.021395 100
17 97.83456 2.142005 0.023438 100
18 97.72872 2.245702 0.02558 100
19 97.61787 2.3543 0.027826 100
20 97.5018 2.468017 0.03018 100
21 97.38027 2.587082 0.032648 100
22 97.25303 2.711733 0.035235 100
23 97.11984 2.842215 0.037947 100
24 96.98043 2.978785 0.040789 100
25 96.83452 3.121707 0.043768 100
26 96.68185 3.271257 0.04689 100
27 96.52212 3.427718 0.050161 100
28 96.35502 3.591387 0.053589 100
29 96.18025 3.762567 0.05718 100
30 95.99748 3.941575 0.060943 100
31 95.80638 4.128735 0.064884 100
32 95.6066 4.324384 0.069013 100
33 95.3978 4.528867 0.073337 100
34 95.17959 4.742542 0.077866 100
35 94.95162 4.965776 0.082609 100
36 94.71348 5.198946 0.087574 100
37 94.46479 5.442439 0.092773 100
38 94.20513 5.696653 0.098216 100
39 93.93409 5.961993 0.103912 100
40 93.65125 6.238877 0.109874 100
41 93.35616 6.527728 0.116113 100
42 93.04838 6.82898 0.122641 100
43 92.72746 7.143073 0.12947 100
44 92.39293 7.470455 0.136613 100
45 92.04434 7.811579 0.144084 100
46 91.6812 8.166904 0.151895 100
47 91.30304 8.536895 0.160062 100
48 90.90938 8.922017 0.168599 100
49 90.49974 9.322739 0.177521 100
50 90.07363 9.73953 0.186844 100
51 89.63056 10.17286 0.196583 100
52 89.17005 10.62319 0.206756 100
53 88.69163 11.09099 0.217379 100
54 88.19483 11.5767 0.22847 100
55 87.67917 12.08078 0.240047 100
56 87.1442 12.60367 0.252128 100
57 86.58949 13.14578 0.264731 100
58 86.01459 13.70753 0.277877 100
59 85.41912 14.2893 0.291585 100
60 84.80266 14.89146 0.305874 100
61 84.16487 15.51437 0.320765 100
62 83.50539 16.15833 0.33628 100
63 82.82392 16.82364 0.352438 100
64 82.12018 17.51056 0.369262 100
65 81.39393 18.21929 0.386772 100
66 80.64498 18.95003 0.404992 100
67 79.87314 19.70291 0.423942 100
68 79.07833 20.47803 0.443645 100
69 78.26047 21.27541 0.464123 100
70 77.41955 22.09506 0.485398 100
71 76.55561 22.93689 0.507493 100
72 75.66877 23.8008 0.53043 100
73 74.75919 24.68658 0.554231 100
74 73.82709 25.59399 0.578917 100
75 72.87278 26.52271 0.604511 100
76 71.89663 27.47234 0.631034 100
77 70.89907 28.44243 0.658506 100
78 69.88061 29.43244 0.686949 100
79 68.84185 30.44177 0.716381 100
80 67.78343 31.46975 0.746823 100
81 66.70609 32.51562 0.778293 100
82 65.61064 33.57855 0.810808 100
83 64.49796 34.65765 0.844387 100
84 63.369 35.75196 0.879045 100
85 62.22477 36.86043 0.914797 100
86 61.06637 37.98197 0.951657 100
87 59.89495 39.11541 0.989639 100
88 58.71171 40.25954 1.028754 100
89 57.51792 41.41307 1.069014 100
90 56.31489 42.57468 1.110427 100
91 55.10399 43.74301 1.153002 100
92 53.8866 44.91665 1.196745 100
93 52.66418 46.09416 1.241661 100
94 51.43816 47.27408 1.287756 100
95 50.21003 48.45494 1.33503 100
96 48.98129 49.63523 1.383485 100
97 47.75341 50.81347 1.43312 100
98 46.52789 51.98817 1.483933 100
99 45.30623 53.15785 1.535921 100
100 44.08987 54.32105 1.589079 100
101 42.88027 55.47633 1.6434 100
102 41.67884 56.62228 1.698877 100
103 40.48694 57.75756 1.755499 100
104 39.30592 58.88082 1.813256 100
105 38.13705 59.99081 1.872137 100
106 36.98156 61.08631 1.932128 100
107 35.84062 62.16617 1.993214 100
108 34.71533 63.22929 2.055381 100
109 33.60673 64.27466 2.11861 100
110 32.51579 65.30133 2.182885 100
111 31.4434 66.30841 2.248186 100
112 30.39039 67.29512 2.314494 100
113 29.3575 68.26071 2.381789 100
114 28.3454 69.20455 2.45005 100
115 27.35467 70.12607 2.519255 100
116 26.38585 71.02477 2.589381 100
117 25.43936 71.90024 2.660406 100
118 24.51557 72.75212 2.732306 100
119 23.61478 73.58016 2.805058 100
120 22.73722 74.38414 2.878638 100
121 21.88303 75.16395 2.953022 100
122 21.05232 75.9195 3.028186 100
123 20.24511 76.65079 3.104106 100
124 19.46137 77.35788 3.180756 100
125 18.70102 78.04087 3.258114 100
126 17.96392 78.69992 3.336155 100
127 17.2499 79.33524 3.414855 100
128 16.55873 79.94708 3.49419 100
129 15.89013 80.53573 3.574137 100
130 15.24381 81.10152 3.654673 100
131 14.61942 81.64481 3.735775 100
132 14.01659 82.16599 3.817419 100
133 13.43493 82.66549 3.899585 100
134 12.87402 83.14373 3.982251 100
135 12.33341 83.60119 4.065395 100
136 11.81266 84.03834 4.148996 100
137 11.31129 84.45568 4.233034 100
138 10.82881 84.8537 4.31749 100
139 10.36474 85.23292 4.402344 100
140 9.918571 85.59385 4.487576 100
141 9.489799 85.93703 4.57317 100
142 9.077917 86.26298 4.659107 100
143 8.682418 86.57221 4.74537 100
144 8.302794 86.86526 4.831943 100
145 7.938539 87.14265 4.918808 100
146 7.589153 87.4049 5.00595 100
147 7.254138 87.65251 5.093355 100
148 6.933005 87.88599 5.181008 100
149 6.625271 88.10584 5.268894 100
150 6.33046 88.31254 5.357 100
151 6.048107 88.50658 5.445312 100
152 5.777755 88.68843 5.533819 100
153 5.518957 88.85854 5.622507 100
154 5.271277 89.01736 5.711366 100
155 5.034289 89.16533 5.800383 100
156 4.80758 89.30287 5.889548 100
157 4.590747 89.4304 5.978851 100
158 4.383397 89.54832 6.068282 100
159 4.185152 89.65702 6.15783 100
160 3.995642 89.75687 6.247487 100
161 3.814513 89.84824 6.337244 100
162 3.641418 89.93149 6.427092 100
163 3.476025 90.00695 6.517024 100
164 3.318012 90.07496 6.607031 100
165 3.167068 90.13583 6.697106 100
166 3.022893 90.18987 6.787241 100
167 2.885199 90.23737 6.877431 100
168 2.753707 90.27862 6.967669 100
169 2.628151 90.3139 7.057947 100
170 2.508273 90.34347 7.148261 100
171 2.393826 90.36757 7.238605 100
172 2.284571 90.38646 7.328972 100
173 2.180281 90.40036 7.419359 100
174 2.080736 90.4095 7.509759 100
175 1.985727 90.4141 7.600169 100
176 1.895052 90.41437 7.690583 100
177 1.808516 90.41049 7.780997 100
178 1.725936 90.40266 7.871407 100
179 1.647133 90.39106 7.96181 100
180 1.571938 90.37586 8.052201 100
181 1.500188 90.35723 8.142577 100
182 1.431727 90.33534 8.232934 100
183 1.366406 90.31032 8.32327 100
184 1.304083 90.28234 8.41358 100
185 1.24462 90.25152 8.503862 100
186 1.187889 90.218 8.594114 100
187 1.133763 90.18191 8.684332 100
188 1.082124 90.14336 8.774514 100
189 1.032858 90.10248 8.864657 100
190 0.985857 90.05938 8.95476 100
191 0.941015 90.01417 9.044819 100
192 0.898235 89.96693 9.134833 100
193 0.857421 89.91778 9.2248 100
194 0.818483 89.8668 9.314718 100
195 0.781335 89.81408 9.404585 100
196 0.745893 89.75971 9.494399 100
197 0.712079 89.70376 9.584158 100
198 0.679818 89.64632 9.673862 100
199 0.649039 89.58745 9.763509 100
200 0.619672 89.52723 9.853096 100
201 0.591653 89.46572 9.942623 100
202 0.56492 89.40299 10.03209 100
203 0.539412 89.3391 10.12149 100
204 0.515073 89.2741 10.21083 100
205 0.49185 89.20805 10.30011 100
206 0.46969 89.141 10.38931 100
207 0.448544 89.073 10.47845 100
208 0.428365 89.00411 10.56753 100
209 0.40911 88.93436 10.65653 100
210 0.390734 88.8638 10.74547 100
211 0.373198 88.79247 10.83433 100
212 0.356462 88.72042 10.92312 100
213 0.340489 88.64767 11.01184 100
214 0.325245 88.57427 11.10049 100
215 0.310695 88.50024 11.18906 100
216 0.296808 88.42563 11.27756 100
217 0.283553 88.35046 11.36599 100
218 0.2709 88.27476 11.45434 100
219 0.258823 88.19856 11.54262 100
220 0.247294 88.12189 11.63081 100
221 0.236288 88.04478 11.71894 100
222 0.22578 87.96724 11.80698 100
223 0.21575 87.8893 11.89495 100
224 0.206173 87.81099 11.98284 100
225 0.197029 87.73232 12.07065 100
226 0.188299 87.65332 12.15838 100
227 0.179963 87.574 12.24603 100
228 0.172003 87.49439 12.33361 100
229 0.164403 87.4145 12.4211 100
230 0.157145 87.33434 12.50852 100
231 0.150213 87.25394 12.59585 100
232 0.143594 87.1733 12.6831 100
233 0.137272 87.09245 12.77028 100
234 0.131234 87.0114 12.85737 100
235 0.125467 86.93015 12.94438 100
236 0.119958 86.84873 13.03131 100
237 0.114696 86.76714 13.11816 100
238 0.10967 86.6854 13.20493 100
239 0.104869 86.60352 13.29161 100
240 0.100282 86.5215 13.37822 100
241 0.0959 86.43936 13.46474 100
242 0.091713 86.35711 13.55118 100
243 0.087713 86.27475 13.63753 100
244 0.083891 86.1923 13.72381 100
245 0.080239 86.10976 13.81 100
246 0.07675 86.02714 13.89611 100
247 0.073415 85.94445 13.98214 100
248 0.070228 85.86169 14.06808 100
249 0.067183 85.77887 14.15395 100
250 0.064272 85.696 14.23972 100
251 0.061491 85.61309 14.32542 100
252 0.058832 85.53014 14.41103 100
253 0.056291 85.44715 14.49656 100
254 0.053861 85.36413 14.58201 100
255 0.051539 85.28109 14.66737 100
256 0.049319 85.19803 14.75266 100
257 0.047197 85.11495 14.83785 100
258 0.045168 85.03186 14.92297 100
259 0.043228 84.94877 15.008 100
260 0.041374 84.86568 15.09295 100
261 0.0396 84.78258 15.17781 100
262 0.037905 84.6995 15.2626 100
263 0.036283 84.61642 15.3473 100
264 0.034733 84.53335 15.43191 100
265 0.03325 84.4503 15.51645 100
266 0.031832 84.36727 15.6009 100
267 0.030475 84.28426 15.68526 100
268 0.029178 84.20127 15.76955 100
269 0.027937 84.11831 15.85375 100
270 0.02675 84.03538 15.93787 100
271 0.025615 83.95248 16.0219 100
272 0.024529 83.86962 16.10586 100
273 0.02349 83.78678 16.18973 100
274 0.022496 83.70399 16.27351 100
275 0.021545 83.62124 16.35722 100
276 0.020635 83.53853 16.44084 100
277 0.019764 83.45586 16.52438 100
278 0.018931 83.37324 16.60783 100
279 0.018134 83.29066 16.69121 100
280 0.017371 83.20813 16.7745 100
281 0.016641 83.12565 16.8577 100
282 0.015943 83.04323 16.94083 100
283 0.015274 82.96085 17.02387 100
284 0.014634 82.87853 17.10683 100
285 0.014022 82.79627 17.18971 100
286 0.013435 82.71406 17.27251 100
287 0.012874 82.6319 17.35522 100
288 0.012337 82.54981 17.43785 100
289 0.011822 82.46777 17.5204 100
290 0.01133 82.3858 17.60287 100
291 0.010858 82.30388 17.68526 100
292 0.010407 82.22203 17.76756 100
293 0.009975 82.14024 17.84978 100
294 0.009561 82.05851 17.93192 100
295 0.009165 81.97685 18.01398 100
296 0.008785 81.89526 18.09596 100
297 0.008422 81.81372 18.17785 100
298 0.008074 81.73226 18.25967 100
299 0.007741 81.65086 18.3414 100
300 0.007422 81.56953 18.42305 100

2. Holding the other variable constant,
If you increase the infection coefficient γ, then the population move from susceptible to infected with a high rate that means Susceptible and infected line intersect each other on less time duration than the given condition.
If you decrease the infection coefficient γ, then the population move from susceptible to infected with a low rate that means Susceptible and infected line intersect each other on extended time duration than the given condition.

3. Holding the other variable constant,
If you increase the infection coefficient 'a', then the population moves from infected to recovery with a high rate which means more people in recovery than the given condition. It will help to attend the equilibrium stage faster.
If you decrease the infection coefficient a, then the population moves from infected to recovery with a low rate which means fewer people in recovery than the given condition. It will slow down to attend the equilibrium stage.
This happens because of infection coefficient 'a' is responsible for the movement of the population form the infected population to the recovery population. If it increases then the movement of population increase and if it decreases then the movement of population decrease.


Related Solutions

The SIR Model for the Spread of Disease Set up the three differential equations and perform...
The SIR Model for the Spread of Disease Set up the three differential equations and perform a simulation of the solution of the three equations. Start with a Susceptible (S) of 327,500,000 (the population of the US) and I value of 1 and an R value of zero. Derive your constants, r,a so your simulation matches current values of I and R. Use a dt of 1 day.
One of the assumptions in the basic SIR model was that the population was mixed homogeneously...
One of the assumptions in the basic SIR model was that the population was mixed homogeneously and therefore all susceptible elements were equal before the disease, however, in reality that does not always happen. Sometimes the geographical region or of different age groups. In the basic model, make the necessary modifications to include the case in which the population is not homogeneous, and perform a complete analysis of the model.
Another of the assumptions of the basic SIR model is that the population does not lose...
Another of the assumptions of the basic SIR model is that the population does not lose the immunity once it has been acquired. But in real life that doesn't always happen. In the basic model, make the necessary modifications to include the case in which the population loses immunity and is again susceptible to illness. Perform a full model analysis.
Using NumPy etc. How to calculate a population mean and population standard deviation of a column...
Using NumPy etc. How to calculate a population mean and population standard deviation of a column with values. Also, how to calculate the range of values around the mean that includes 95% confidence interval of values within the column.
In Excel, create a 2x30 data table with the left column representing a population of prey...
In Excel, create a 2x30 data table with the left column representing a population of prey and the right column representing a population of predators. Use the population model presented below. Let the starting values of the model parameters be: r = 1.3, k = 1, s = .5, v = 1.6, and u = .7 Let the starting population of P = 1.1 and Q = .4 Difference equations: P[t + 1] = P[t](1 + r(1 – P[t]/K)) -...
As a global manager, create a scenario for analysis using the three-sector model: Real Loanable Funds...
As a global manager, create a scenario for analysis using the three-sector model: Real Loanable Funds Market, Real Goods Market, and the Foreign Exchange Market for Question A. There is no “set” answer here. You are the manager doing the analysis and setting up the scenario. Use your own assumptions. A. In the post-World War II period, the economies of Japan and Germany were rebuilt, and both economies were able to achieve economies of scale in the steel and automobile...
Listed below are the constants in three activity-coefficient equations: Wilson's, Margules' and van Laar's, for the...
Listed below are the constants in three activity-coefficient equations: Wilson's, Margules' and van Laar's, for the system ethanol-water. In addition, the vapor-liquid equilibria at one pressure are tabulated. a) Using the Wilson equation and the constants listed below, find the bubble pressure and vapor composition for a mixture of 30 mol% ethanol at 90 C b) Using the Wilson equation, find the dew pressure and composition for a mixture of 80 mol% ethanol at 110 C c) Using the Wilson...
1. Create a prediction for period 7 using the naive model. 2. Create your forecast using...
1. Create a prediction for period 7 using the naive model. 2. Create your forecast using the naive model. Calculate all the errors for each period. What is the error for period 3? 3. What is the mean sqaured error? 4. Find the root mean squared error
Choose a model (from list below), then choose a topic using that model to create an...
Choose a model (from list below), then choose a topic using that model to create an infographic that presents that topic. For example: You want to present healthy eating to a group of senior citizens. What model would best fit that group for communicating healthy eating? Using the steps of the model create an infographic for seniors on healthy eating. Pender’s Health Promotion Model Prochaska & DiClemente’s Transtheoretical Model of Behavior Change Bandura’s Social Cognitive Theory Leavell & Clark’s Primary,...
Discuss THREE (3) equations and THREE (3) differences that exist Southeast Asia's Financial Crisis (1997) and...
Discuss THREE (3) equations and THREE (3) differences that exist Southeast Asia's Financial Crisis (1997) and the Global Financial Crisis (2008).
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT