Question

In: Advanced Math

Let f: A ->B and g:B -> A be functions. Prove that if fog is one-to-one...

Let f: A ->B and g:B -> A be functions. Prove that if fog is one-to-one and gof is onto, then f is a bijection.

Solutions

Expert Solution


Related Solutions

Let f be a one-to-one function from A into b with B countable. Prove that A...
Let f be a one-to-one function from A into b with B countable. Prove that A is countable. Section on Cardinality
4. Let a < b and f be monotone on [a, b]. Prove that f is...
4. Let a < b and f be monotone on [a, b]. Prove that f is Riemann integrable on [a, b].
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions,...
Let f: A→B and g:B→C be maps. (A) If f and g are both one-to-one functions, show that g∘f is one-to-one. (B) If g∘f is onto, show that g is onto. (C) If g∘f is one-to-one, show that f is one-to-one. (D) If g∘f is one-to-one and f is onto, show that g is one-to-one. (E) If g∘f is onto and g is one-to-one, show that f is onto. (Abstract Algebra)
Prove the following: (a) Let A be a ring and B be a field. Let f...
Prove the following: (a) Let A be a ring and B be a field. Let f : A → B be a surjective homomorphism from A to B. Then ker(f) is a maximal ideal. (b) If A/J is a field, then J is a maximal ideal.
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is...
9. Let f be continuous on [a, b]. Prove that F(x) := sup f([x, b]) is continuous on [a, b]
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and...
TOPOLOGY Let f : X → Y be a function. Prove that f is one-to-one and onto if and only if f[A^c] = (f[A])^c for every subset A of X. (prove both directions)
Prove 1. Let f : A→ B and g : B → C . If g...
Prove 1. Let f : A→ B and g : B → C . If g 。 f is one-to-one, then f is one-to-one. 2. Equivalence of sets is an equivalence relation (you may use other theorems without stating them for this one).
Let f:A→B and g:B→C be maps. (a) If f and g are both one-to-one functions, show...
Let f:A→B and g:B→C be maps. (a) If f and g are both one-to-one functions, show that g ◦ f is one-to-one. (b) If g◦f is onto, show that g is onto. (c) If g ◦ f is one-to-one, show that f is one-to-one. (d) If g ◦ f is one-to-one and f is onto, show that g is one-to-one. (e) If g ◦ f is onto and g is one-to-one, show that f is onto.
Prove the following: Let f and g be real-valued functions defined on (a, infinity). Suppose that...
Prove the following: Let f and g be real-valued functions defined on (a, infinity). Suppose that lim{x to infinity} f(x) = L and lim{x to infinity} g(x) = M, where L and M are real. Then lim{x to infinity} (fg)(x) = LM. You must use the following definition: L is the limit of f, and we write that lim{x to infinity} f(x) = L provided that for each epsilon > 0 there exists a real number N > a such...
1.29 Prove or disprove that this is a vector space: the real-valued functions f of one...
1.29 Prove or disprove that this is a vector space: the real-valued functions f of one real variable such that f(7) = 0.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT