In: Economics
1/Laura's preferences over commodities x1 and x2 can be represented by U(x1,x2)=min{3x1, x2}. She maximizes her utility subject to her budget constraint. Suppose there is an increase in p1.
There is an income effect but not a substitution effect of this price change. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
There are both income and substitution effects of this price change. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
There is a substitution effect but not an income effect of this price change. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
It is unclear whether the consumer will buy more or less x1 as a result of the increase in p1.
As price falls along a downward sloping compensated demand curve (in the x1, p1 plane), consumer utility will
|
Expenditure = p1x1+p2x2
Setting up lagrangean
L = p1x1 +p2x2 + m[U0- 10x1x2]
m is the lagrangean multiplier
FOC:
δL/δx1 = p1-10mx1 = 0------------------------------1)
δL/δx2 = p2-10mx2 = 0 -----------------------------------2)
δL/δm = U0- 10x1x2 = 0 -----------------------------------------3)
Divide equation 1) by 2) we get
P1/p2 = x1/x2
X1 = p1/p2 *x2
Put in equation 3)
U0 = 10(p1/p2)*(x2)2
x2 = [(U0*p2)/10p1]1/2
X1 = [(U0*p1)/10p2]1/2
The correct answer is option B)