In: Statistics and Probability
You work for a bubble gum company testing new flavors to bring to market. Your marketing department claims in an add they made that 8 out of 10 people prefer the new flavor "Crazy-Tasks". You conducted a poll and found that 28 out of 60 people prefer the new flavor "Crazy-Tasks". Test the claim by using a confidence interval at a 95% confidence level.
Ho :   p =    0.8
H1 :   p ╪   0.8
claim is involving the proportion
point estimate = p̂ = x/n = 0.467
Level of Significance,   α =   
0.05          
Number of Items of Interest,   x =  
28          
Sample Size,   n =    60  
       
          
       
Sample Proportion ,    p̂ = x/n =   
0.467          
z -value =   Zα/2 =    1.960   [excel
formula =NORMSINV(α/2)]      
          
       
Standard Error ,    SE = √[p̂(1-p̂)/n] =   
0.0644          
margin of error , E = Z*SE =    1.960  
*   0.0644   =   0.1262
          
       
95%   Confidence Interval is  
           
Interval Lower Limit = p̂ - E =    0.467  
-   0.1262   =   0.3404
Interval Upper Limit = p̂ + E =   0.467  
+   0.1262   =   0.5929
          
       
95%   confidence interval is (   0.340
< p <    0.593 )
0.8 does not lie in the CI , so reject Ho
................
0.467 is point estimate of test statistics
0.8 is the null nypothesis proportion
.......................
Standard Error ,    SE = √( p(1-p)/n ) =   
0.0516          
       
Z Test Statistic = ( p̂-p)/SE = (   0.4667  
-   0.8   ) /   0.0516  
=   -6.4550
          
           
   
critical z value =    ±    1.960  
[excel formula =NORMSINV(α/2)]      
       
          
           
   
p-Value   =   0.0000   [excel formula
=2*NORMSDIST(z)]          
   
Decision:   p-value<α , reject null hypothesis
          
           
There is enough evidence to say that proportion is not
equal to 0.8   
Please revert back in case of any doubt.
Please upvote. Thanks in advance.