In: Chemistry
Calculate the concentrations of all species in a 1.49 M Na2SO3 (sodium sulfite) solution. The ionization constants for sulfurous acid are Ka1 = 1.4× 10–2 and Ka2 = 6.3× 10–8. [Na+]= [SO3^2-]= [HSO3^-]= [H2SO3]= [OH^-]= [H^+]=
Sodium sulfite dissociates completely.
2Na+= 2.98
SO32-= 1.49
Na2SO3(aq) + H2O(l) 2Na+ + SO32-
When Na2SO3(aq) dissociates it forms 2 moles of Na+ and sulfite ions i.e. weak base.
When weak base reacts with H2O it forms OH- ions and HSO3-
Kw= [H+] [OH-] = 1.0 x 10-14
SO32-(aq) ←→ HSO3- + OH-
I: 1.49 0 10-7
C: -x +x +x
E: 1.49 – x x 10-7+x
Since it is base so we have to found Kb first.
Ka x Kb = Kw = [H+] [OH-]= 1.0 x 10-14 -----------------------(1)
We have Ka2 = 6.3 × 10–8
So, Kb = 1.0 x 10-14 / 6.3 x 10-8
For above ICE chart we got
Kb = [HSO3-] [OH-] / [SO32-]
1 x 10-14 / 6.3 x 10-8 = [x][x] / [1.49 - x]
x2 = (1.49)(1.6 x 10-7) ; 1.49 – x ~ 1.49; drop down x
x2 = 2.4 x 10-7
x = 4.9 x 10-4
So, x = 4.9 x 10-4 = [HSO3-] = [OH-]
A small amount of the hydrogen sulfite ion (HSO3–) will also react with water:
HSO3-(aq) ←→ H2SO3(aq) + OH-(aq)
I . 0.00049 0 0.00049
C: -y +y +y
E: 0.00049-y y 0.00049+y
Ka x Kb = Kw = [H+] [OH-]= 1.0 x 10-14-----------------------(1)
We have Ka1 = 1.4 × 10–2
So, Kb2 = 1.0 x 10-14 / 1.4 x 10-2
For above ICE chart we got
Kb = [H2SO3] [OH-] / [HSO3-]
1 x 10-14 / 1.4 x 10-2 = [y][0.00049 + y] / [0.00049 - y]
7.1 x 10-13 = [y] [0.00049 + y] / [0.00049] ;
(Dropping down y from the denominator since y << 0.00049)
3.5 x 10-16 = y2 + 0.00049y
y2 + 0.00049y – 3.5 x 10-16 =0
Solving the quadratic equation, we get;
y = 7.14 x 10-13
y = 7.14 x 10-13= [H2SO3]
Now, from equation (1)
[H+] [OH-]= 1.0 x 10-14
[H+] = 1.0 x 10-14 / [OH-] = (1.0 x 10-14) / (4.9 x 10-4) = 2.0 x 10-11