In: Statistics and Probability
Like father, like son: In 1906, the statistician Karl Pearson measured the heights of 1078 pairs of fathers and sons. The following table presents a sample of 7pairs, with height measured in inches, simulated from the distribution specified by Pearson.
| Father's height  | 
Son's height  | 
|---|---|
| 
 69.0  | 
 69.1  | 
| 
 66.7  | 
 68.8  | 
| 
 70.1  | 
 73.3  | 
| 
 68.3  | 
 68.3  | 
| 
 70.7  | 
 71.0  | 
| 
 73.6  | 
 76.5  | 
| 
 69.3  | 
 71.4  | 
Use the P-value method to test H0:β1=0 versus H1:β1>0. Can you conclude that father's height is useful in predicting son's height? Use the =α0.05 level of significance and the TI-84 calculator.
Compute the least-squares regression line for predicting son's height y from father's height x. Round the slope and y-intercept values to at least four decimal places.
Using Excel, go to Data, select Data Analysis, choose Regression. Put Father's height in X input range and Son's height in Y input range.
| SUMMARY OUTPUT | ||||||||
| Regression Statistics | ||||||||
| Multiple R | 0.898 | |||||||
| R Square | 0.806 | |||||||
| Adjusted R Square | 0.767 | |||||||
| Standard Error | 1.410 | |||||||
| Observations | 7 | |||||||
| ANOVA | ||||||||
| df | SS | MS | F | Significance F | ||||
| Regression | 1 | 41.226 | 41.226 | 20.751 | 0.006 | |||
| Residual | 5 | 9.934 | 1.987 | |||||
| Total | 6 | 51.160 | ||||||
| Coefficients | Standard Error | t Stat | P-value | Lower 95% | Upper 95% | Lower 95.0% | Upper 95.0% | |
| Intercept | -13.3792 | 18.575 | -0.720 | 0.504 | -61.127 | 34.368 | -61.127 | 34.368 | 
| Father's height | 1.2140 | 0.266 | 4.555 | 0.006 | 0.529 | 1.899 | 0.529 | 1.899 | 
H0:β1=0 versus H1:β1>0
p-value = 0.006
Since p-value is less than 0.05, we reject the null hypothesis.
So, father's height is useful in predicting son's height.
Regression line: -13.37922+1.2140x
Slope = 1.2140
Intercept = -13.3792