Question

In: Chemistry

The equilibrium constant Kc for the decomposition of phosgene, COCl2, is 4.63 × 10−3 at 527°C:...

The equilibrium constant Kc for the decomposition of phosgene, COCl2, is 4.63 × 10−3 at 527°C: COCl2(g) ⇆ CO(g) + Cl2(g) Calculate the equilibrium partial pressure of all the components, starting with pure phosgene at 0.760 atm.

Solutions

Expert Solution

Kp = KC*(RT) deltan.

deltan= Change in number of moles during the reaction, CoCl2-<--->CO +Cl2

deltan=2-1= 1

R= 0.0821 L.atm/mole.K T=527+273=800K

Kp =4.63*10-3*(0.0821*800)1 =0.3

                                            CoCl2              CO              Cl2

Initial (atm)                            0.76               0                0

Change                                  -x                 x                x

equilibrium                         0.76-x             x                 x

x= partial pressure

KP= x2/(0.76-x)= 0.3

when solved using excel, x=0.351 atm

Hence at equilbrium Partial pressures : CoCl2= 0.76-0.351=0.409 atm

partial pressure of CO= partial pressure of Cl2= 0.351 atm


Related Solutions

22. The equilibrium constant Kc for the decomposition of phosgene, COCl2, is 4.63 × 10−3 at...
22. The equilibrium constant Kc for the decomposition of phosgene, COCl2, is 4.63 × 10−3 at 527°C: COCl2(g) ⇆ CO(g) + Cl2(g) Calculate the equilibrium partial pressure of all the components, starting with pure phosgene at 0.360 atm. PCOCl2 = atm PCO = atm PCl2 = atm
4) The equilibrium constant for the reaction shown below is 4.63 x 10-3 at 527oC.                        ...
4) The equilibrium constant for the reaction shown below is 4.63 x 10-3 at 527oC.                         COCl2(g) ó CO(g) + Cl2(g) a)Write the equilibrium constant expression in terms of the chemical concentrations. b)What is the equilibrium constant for the reverse reaction? c)If 0.50 mol of COCl2 is placed in a 2.0 L flask, what will the concentration of all of the reactants and products be when the reaction reaches equilibrium at 527oC?
part a the reaction COCl2(g)<-->CO(g)+Cl2(g) has an equilibrium constant Kc=2.19*10^-10 at 100 degree celcius. is the...
part a the reaction COCl2(g)<-->CO(g)+Cl2(g) has an equilibrium constant Kc=2.19*10^-10 at 100 degree celcius. is the following mixture at equilibrium, and if not, which direction must it shift to reach equilbrium? [COCl2]=3.30*10^-3 M, [CO]=6.2*10^-9 M, [Cl2]=2.00*10^-9 M part b when additional lead ions are added to a saturated solution of PbSO4, which direction will the reaction shift? part c what is the pH of a 0.015 M solution of NaOH? part d the reaction 2SO2(g)+O2(g)<-->2SO3(g) has an equilibrium constant, Kp=0.345...
At 1700 °C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10–4. N2...
At 1700 °C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10–4. N2 (g) +O2 (g) <---> 2NO (g) What percentage of O2 will react to form NO if 0.737 mol of N2 and 0.737 mol of O2 are added to a 0.645-L container and allowed to come to equilbrium at 1700 °C?
At 1700 °C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10–4. N2...
At 1700 °C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10–4. N2 (g) +O2 (g) <---> 2NO (g) What percentage of O2 will react to form NO if 0.737 mol of N2 and 0.737 mol of O2 are added to a 0.645-L container and allowed to come to equilbrium at 1700 °C?
At 1700 degrees C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10^-4....
At 1700 degrees C, the equilibrium constant, Kc, for the following reaction is 4.10 × 10^-4. N2 (g) +O2 (g) <---> 2NO (g) What percentage of O2 will react to form NO if 0.713 mol of N2 and 0.713 mol of O2 are added to a 0.521-L container and allowed to come to equilbrium at 1700 degrees C?
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2...
At 100.0 C, the equilibrium constant for the reaction: CO (g) + Cl2 (g) <--> COCl2 (g) has a value of 4.6 x 109. If 0.40 mol of COCl2 is placed into a 10.0 L flask at 100.0 C, what will be the equilibrium concentration of all species? (A simplifying approximation that will make the solution of the resulting equation easier is to note that x is much less than 0.040mol/L. This means that 0.040 -x is approximately 0.040.)
The equilibrium constant Kc for the reaction N2O4 <—> 2 NO2 at 25degrees C is 170....
The equilibrium constant Kc for the reaction N2O4 <—> 2 NO2 at 25degrees C is 170. Suppose 13.3g of N2O4 is placed in a 4.000-L flask at 25 C. Calculate the percentage of the original N2O4 that is dissociated?
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) +...
Find the value of the equilibrium constant Kc at 460°C for the reaction- ½ H2(g) + ½ I2(g) HI(g) given the following data: A 4.50-mol sample of HI is placed in a 1.00-L vessel at 460°C, and the reaction system is allowed to come to equilibrium. The HI partially decomposes, forming 0.343 mol H2 at equilibrium. A) 0.0123 B) 0.0081 C) 0.0309 D) 11.1 E) 5.69
The equilibrium constant, Kc, for the following reaction is 1.05×10-3 at 446 K. PCl5(g) PCl3(g) +...
The equilibrium constant, Kc, for the following reaction is 1.05×10-3 at 446 K. PCl5(g) PCl3(g) + Cl2(g) When a sufficiently large sample of PCl5(g) is introduced into an evacuated vessel at 446 K, the equilibrium concentration of Cl2(g) is found to be 0.498 M. Calculate the concentration of PCl5 in the equilibrium mixture. ____M _______________________________________________________________________________________________________________ A student ran the following reaction in the laboratory at 689 K: N2(g) + 3H2(g) 2NH3(g) When she introduced 4.06×10-2 moles of N2(g) and 5.20×10-2...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT