Question

In: Physics

A block with mass 0.460 kg sits at rest on a light but not long vertical...

A block with mass 0.460 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on the floor.

a)How much elastic potential energy is stored in the spring when the block is sitting at rest on it?

b) A second identical block is dropped onto the first from a height of 4.10 mm above the first block and sticks to it. What is the maximum elastic potential energy stored in the spring during the motion of the blocks after the collision?

c)What is the maximum distance the first block moves down after the second block has landed on it?

Solutions

Expert Solution


Related Solutions

A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic...
A 4.00 kg block sits at rest on a rough horizontal surface. The coefficient of kinetic friction between the block and the surface is 0.275. Attached to the right side of the block is a spring which is also attached to a wall farther to the right. The spring has a spring constant of 220 N/m and is initially neither compressed nor stretched. A bullet of mass 50.0 grams is fired at the block from the left side. The bullet...
A box of mass 18.0 kg sits at rest on a horizontal surface. The coefficient of...
A box of mass 18.0 kg sits at rest on a horizontal surface. The coefficient of kinetic friction between the surface and the box is 0.300. The box is initially at rest, and then a constant force of magnitude FF and direction 39.0 ∘∘ below the horizontal is applied to the box; the box slides along the surface. A. What is F if the box has a speed of 6.00 m/s after traveling a distance of 8.00 mm? Express your...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected...
A block of mass m1 = 0.500 kg sits on a frictionless surface and is connected by a weightless string to a weight of mass m2 = 0.200 kg that hangs from a pulley. The system is initially at rest. If the mass m2 is released and drops for 1.00 m, what is the speed of the system? Assume that mass m1 does not reach the edge of the surface. Use energy considerations, not force considerations. What is the speed...
Example #2A block with mass m = 5 kg sits on a surface with a coefficient...
Example #2A block with mass m = 5 kg sits on a surface with a coefficient of static friction sk= 0.5 and a coefficient of kinetic friction uk= 0.3. a)If you can pull on the block at any angle, what minimum force is required to break static friction and cause the block to slide? b)What is the optimal angle to pull at? c)If you pull at the optimal angle with the minimum force, what will the acceleration of the block...
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table....
A 2.0 kg block sits on a 4.0 kg block that is on a frictionless table. The coefficients of friction between the blocks are µs = 0.80 and µk = 0.20. (a) What is the maximum force F that can be applied to the 4.0 kg block if the 2.0 kg block is not to slide? ______N (b) If F is half this value, find the acceleration of each block. ______m/s2 (2.0 kg block) ______m/s2 (4.0 kg block) --Find the...
A block of mass m1 = 1 kg is initially at rest at the top of...
A block of mass m1 = 1 kg is initially at rest at the top of an h1 = 1 meter high ramp, see Fig. 2 below. It slides down the frictionless ramp and collides elastically with a block of unknown mass m2, which is initially at rest. After colliding with m2, mass m1 recoils and achieves a maximum height of only h2 = 0.33 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide...
A 0.78-kg block and a 0.56-kg block sits on a rotating disk. They are connecting by...
A 0.78-kg block and a 0.56-kg block sits on a rotating disk. They are connecting by a 12-cm long string. The coefficients of static and kinetic friction between the block and disk are µs = 0.87 and µk = 0.63, respectively. The cart is on wheels and moves frictionless. The distances of the block and the cart from the center of disk are 0.23 m and 0.35 m, respectively. The block and cart are sitting (i.e., are not moving) relative...
E3. A block of mass 1.00 kg sits on an inclined plane as shown. (Figure 1)A...
E3. A block of mass 1.00 kg sits on an inclined plane as shown. (Figure 1)A force of magnitude 50.0 N is pulling the block up the incline. The coefficient of kinetic friction between the plane and the block is 0.500. The inclined plane makes an angle 10.0 degrees with the horizontal. What is the total work Wfric done on the block by the force of friction as the block moves a distance 6.00 mm down the incline? E12. On...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass...
A block with mass m =6.2 kg is hung from a vertical spring. When the mass hangs in equilibrium, the spring stretches x = 0.22 m. While at this equilibrium position, the mass is then given an initial push downward at v = 4.6 m/s. The block oscillates on the spring without friction. After t = 0.32 s what is the speed of the block? At t = 0.32 s what is the magnitude of the net force on the...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT