Question

In: Advanced Math

Let f(x)∈F[x] be separable of degree n and let K be the splitting field of f(x)....

Let f(x)∈F[x] be separable of degree n and let K be the splitting field of f(x). Show that the order of Gal(K/F) divides n!.

Solutions

Expert Solution


Related Solutions

Let f be an irreducible polynomial of degree n over K, and let Σ be the...
Let f be an irreducible polynomial of degree n over K, and let Σ be the splitting field for f over K. Show that [Σ : K] divides n!.
Theorem: Let K/F be a field extension and let a ∈ K be algebraic over F....
Theorem: Let K/F be a field extension and let a ∈ K be algebraic over F. If deg(mF,a(x)) = n, then 1. F[a] = F(a). 2. [F(a) : F] = n, and 3. {1, a, a2 , ..., an−1} is a basis for F(a).
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The...
Prove the following: Let f(x) be a polynomial in R[x] of positive degree n. 1. The polynomial f(x) factors in R[x] as the product of polynomials of degree 1 or 2. 2. The polynomial f(x) has n roots in C (counting multiplicity). In particular, there are non-negative integers r and s satisfying r+2s = n such that f(x) has r real roots and s pairs of non-real conjugate complex numbers as roots. 3. The polynomial f(x) factors in C[x] as...
Let K be a field. Observe that the polynomials in K[x] that are not zero and...
Let K be a field. Observe that the polynomials in K[x] that are not zero and not units are precisely the polynomials of positive degree.
2 Let F be a field and let R = F[x, y] be the ring of...
2 Let F be a field and let R = F[x, y] be the ring of polynomials in two variables with coefficients in F. (a) Prove that ev(0,0) : F[x, y] → F p(x, y) → p(0, 0) is a surjective ring homomorphism. (b) Prove that ker ev(0,0) is equal to the ideal (x, y) = {xr(x, y) + ys(x, y) | r,s ∈ F[x, y]} (c) Use the first isomorphism theorem to prove that (x, y) ⊆ F[x, y]...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires...
Let F be a field and R = Mn(F) the ring of n×n matrices with entires in F. Prove that R has no two sided ideals except (0) and (1).
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that...
Use induction to prove Let f(x) be a polynomial of degree n in Pn(R). Prove that for any g(x)∈Pn(R) there exist scalars c0, c1, ...., cn such that g(x)=c0f(x)+c1f′(x)+c2f′′(x)+⋯+cnf(n)(x), where f(n)(x)denotes the nth derivative of f(x).
Let f(x)=x • 3^x a) Find formula for f^(n) •(x) for natural n (the n order...
Let f(x)=x • 3^x a) Find formula for f^(n) •(x) for natural n (the n order derivative). b) Write the Taylor series generated by f(x) in 0.
Let X Geom(p). For positive integers n, k define P(X = n + k | X...
Let X Geom(p). For positive integers n, k define P(X = n + k | X > n) = P(X = n + k) / P(X > n) : Show that P(X = n + k | X > n) = P(X = k) and then briefly argue, in words, why this is true for geometric random variables.
Let f(n,k) be the number of equivalence relations with k classes on set with n elements....
Let f(n,k) be the number of equivalence relations with k classes on set with n elements. a) What is f(2,4)? b) what is f(4,2)? c) Give a combinational proof that f(n,k) = f(n-1,k-1)+k * f(n-1,k)
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT