In: Computer Science
IDENTIFY THE ERROR SO THAT THE CODE WILL HAVE NO ERROR USING SUCCESSIVE OVER RELAXATION METHOD
function [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)
% Solves Ax = b by Gauss-Seidel method with relaxation.
% USAGE: [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)
% INPUT:
% func = handle of function that returns improved x using
% x = starting solution vector
% maxIter = allowable number of iterations (default is 500)
% epsilon = error tolerance (default is 1.0e-9)
% OUTPUT:
% x = solution vector
% numIter = number of iterations carried out
% omega = computed relaxation factor
if nargin < 4; epsilon = 1.0e-9; end
if nargin < 3; maxIter = 500; end
k = 10; p = 1; omega = 1;
for numIter = 1:maxIter
xOld = x;
x = feval(func,x,omega);
dx = sqrt(dot(x - xOld,x - xOld));
if dx < epsilon; return; end
if numIter == k; dx1 = dx; end
if numIter == k + p
omega = 2/(1 + sqrt(1 - (dx/dx1)ˆ(1/p)));
end
end
error(’Too many iterations’)
*USING MATHLAB
The function is done in Matlab and corrected for errors. Do let me know if your inputs create an error.
function [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)
% Solves Ax = b by Gauss-Seidel method with relaxation.
% USAGE: [x,numIter,omega] = gaussSeidel(func,x,maxIter,epsilon)
% INPUT:
% func = handle of function that returns improved x using
% x = starting solution vector
% maxIter = allowable number of iterations (default is 500)
% epsilon = error tolerance (default is 1.0e-9)
% OUTPUT:
% x = solution vector
% numIter = number of iterations carried out
% omega = computed relaxation factor
if nargin < 4
epsilon = 1.0e-9;
end
if nargin < 3
maxIter = 500;
end
k = 10; p = 1; omega = 1;
for numIter = 1:maxIter
xOld = x;
x = feval(func,x,omega);
dx = sqrt(dot(x - xOld,x - xOld));
if dx < epsilon
return;
end
if numIter == k
dx1 = dx;
end
if numIter == k + p
omega = 2/(1 + sqrt(1 - (dx/dx1)^(1/p)));
end
end
end