Question

In: Computer Science

Using a truth table determine whether the argument form is valid or invalid p ∧ q...

Using a truth table determine whether the argument form is valid or invalid

p ∧ q →∼ r

p∨∼q

∼q→p

∴∼ r

Solutions

Expert Solution

Truth Table:

p

q

r

~q

~r

(pq)

(p q) ~r

(p V `~q)

(~q p)

~q

[(p q) ~r] (p V `~q) (~q p)

    0

    0

    0

    1

    1

    0

    1

    1

    0

    1

    0

    0

    0

    1

    1

    0

    0

    1

    1

    0

    1

    0

    0

    1

    0

    0

    1

    0

    1

    0

    1

    0

    0

    0

    1

    1

    0

    0

    0

    1

    0

    1

    0

    0

    1

    0

    0

    1

    1

    0

    1

    1

    1

    1

    1

    1

    0

    1

    1

    0

    0

    1

    1

    1

    1

    1

    1

    1

    0

    0

    1

    1

    1

    1

    1

    0

    1

    1

    1

    1

    0

    0

    1

    0

    1

    1

    0

    0

Explanation:

Negation(¬) of any logical Identity P is Nothing but Opposite Truth Value for P. i.e If P is T then (¬P) is F

And() Operation is Nothing but if Truth value of P and Q is True then (PQ) is True

If any Truth value of P and Q is False then (PQ) is False

OR(V) Operation is Nothing but if Truth values of both P & Q is False then (PVQ) is False

If any Truth value of P & Q is True then (PVQ) is True

Implies() Operation is Nothing but if Truth value of (PQ) is False If and only if P has Truth value True and Q has Truth value False. Other wise (PQ) is True

Conclution: From the above truth table if we observe the last TWO columns which are Not Equivalent.

So the given argument form is Invalid


Related Solutions

Exercise 1.13.5: Determine and prove whether an argument in English is valid or invalid. Prove whether...
Exercise 1.13.5: Determine and prove whether an argument in English is valid or invalid. Prove whether each argument is valid or invalid. First find the form of the argument by defining predicates and expressing the hypotheses and the conclusion using the predicates. If the argument is valid, then use the rules of inference to prove that the form is valid. If the argument is invalid, give values for the predicates you defined for a small domain that demonstrate the argument...
Translate the following into standard form and symbolic form. Is it a valid or invalid argument?...
Translate the following into standard form and symbolic form. Is it a valid or invalid argument? Sound or unsound? Why? "Science and religion are basically the same. In religion, you believe something based purely upon faith. But in science, even if there is evidence, you have to have faith in your experiments and in the scientific method."" critical thinking a concise guide 4th edition, its not showing up on chegg study
Create two arguments, one valid and one invalid. Demonstrate with a truth table the validity of...
Create two arguments, one valid and one invalid. Demonstrate with a truth table the validity of each
create two arguments, one valid and one invalid. Demonstrate with a truth table the validity of...
create two arguments, one valid and one invalid. Demonstrate with a truth table the validity of each.
Prove or disprove using a Truth Table( De Morgan's Law) ¬(p∧q) ≡ ¬p∨¬q
Prove or disprove using a Truth Table( De Morgan's Law) ¬(p∧q) ≡ ¬p∨¬q Show the Truth Table for (p∨r) (r→¬q)
Reduce the following argument into an argument form, and then perform the truth table test for...
Reduce the following argument into an argument form, and then perform the truth table test for validity. Create and label the entire truth table. If your program contains a syntax error or a semantic error, then your program will fail to compile. Your program contains a syntax error and a semantic error. Therefore, your program will not fail to compile.
Construct a truth table for the statement [q∨(~r∧p)]→~p. Complete the truth table below by filling in...
Construct a truth table for the statement [q∨(~r∧p)]→~p. Complete the truth table below by filling in the blanks. (T or F) p q r ~r ~r∧p q∨(~r∧p) ~p [q∨(~r∧p)]→~p T T T T T F T F T T F F
write a program that will print a truth table for p ^ ~q. Using C++ please.
write a program that will print a truth table for p ^ ~q. Using C++ please.
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
Discrete math question Prove that ¬(q→p)∧(p∧q∧s→r)∧p is a contradiction without using truth table
1. Determine if the following deduction rule is valid: p∨q ¬p _______ ∴ q 2. Determine...
1. Determine if the following deduction rule is valid: p∨q ¬p _______ ∴ q 2. Determine if the following is a valid deduction rule: (p∧q)→r ¬ p ∨ ¬ q ________ ∴     ¬r 3. Suppose p and q are (possibly molecular) propositional statements. Prove that p and q are logically equivalent if any only if p↔q is a tautology.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT