In: Statistics and Probability
Noodles and Company tested consumer reaction to two spaghetti sauces. Each of 70 judges rated both sauces on a scale of 1 (worst) to 10 (best) using several taste criteria. To correct for possible bias in tasting order, half the judges tasted Sauce A first, while the other half tasted Sauce B first. Actual results are shown below for “overall liking.”
Sauce A: 8, 1, 9, 7, 6, 2, 5, 6, 6, 5, 8, 5, 7, 6, 5, 6, 8, 2, 7, 6, 5, 7, 5, 5, 8,
5, 8, 8, 3, 7, 8, 8, 8, 6, 8, 6, 5, 5, 8, 5, 3, 6, 7, 7, 7, 5, 5, 5, 6, 6,
5, 8, 8, 6, 1, 9, 7, 5, 8, 7, 7, 8, 5, 1, 7, 7, 7, 7, 5, 7
Sauce B:
5, 8, 2, 6, 6, 5, 7, 7, 4, 6, 8, 9, 8, 8, 8, 6, 5, 7, 6, 8, 8, 8, 6, 6, 8,
3, 8, 6, 9, 5, 7, 1, 7, 8, 8, 7, 8, 1, 7, 7, 7, 6, 5, 6, 8, 5, 8, 5, 8, 5,
7, 8, 8, 5, 2, 8, 7, 7, 6, 7, 8, 8, 7, 8, 7, 6, 4, 6, 5, 5
Picture Click here for the Excel Data File
(a) Calculate the mean and standard deviation for each sample. (Round your answers to 3 decimal places.) x⎯⎯ S Sauce A
Sauce B
(b) Calculate the coefficient of variation for each sample. (Enter your answer as a percentage rounded to 1 decimal place.)
CVA
CVB
Solution: | The given data is: | ||||
Sauce A | Sauce B | ||||
8 | 5 | ||||
1 | 8 | ||||
9 | 2 | ||||
7 | 6 | ||||
6 | 6 | ||||
2 | 5 | ||||
5 | 7 | ||||
6 | 7 | ||||
6 | 4 | ||||
5 | 6 | ||||
8 | 8 | ||||
5 | 9 | ||||
7 | 8 | ||||
6 | 8 | ||||
5 | 8 | ||||
6 | 6 | ||||
8 | 5 | ||||
2 | 7 | ||||
7 | 6 | ||||
6 | 8 | ||||
5 | 8 | ||||
7 | 8 | ||||
5 | 6 | ||||
5 | 6 | ||||
8 | 8 | ||||
5 | 3 | ||||
8 | 8 | ||||
8 | 6 | ||||
3 | 9 | ||||
7 | 5 | ||||
8 | 7 | ||||
8 | 1 | ||||
8 | 7 | ||||
6 | 8 | ||||
8 | 8 | ||||
6 | 7 | ||||
5 | 8 | ||||
5 | 1 | ||||
8 | 7 | ||||
5 | 7 | ||||
3 | 7 | ||||
6 | 6 | ||||
7 | 5 | ||||
7 | 6 | ||||
7 | 8 | ||||
5 | 5 | ||||
5 | 8 | ||||
5 | 5 | ||||
6 | 8 | ||||
6 | 5 | ||||
5 | 7 | ||||
8 | 8 | ||||
8 | 8 | ||||
6 | 5 | ||||
1 | 2 | ||||
9 | 8 | ||||
7 | 7 | ||||
5 | 7 | ||||
8 | 6 | ||||
7 | 7 | ||||
7 | 8 | ||||
8 | 8 | ||||
5 | 7 | ||||
1 | 8 | ||||
7 | 7 | ||||
7 | 6 | ||||
7 | 4 | ||||
7 | 6 | ||||
5 | 5 | ||||
7 | 5 | ||||
Mean | 6.071 | 6.414 | |||
Standard deviation | 1.852 | 1.781 | |||
Coefficient of varation | 30.5 | 27.8 | |||
Formula Used: | |||||
Mean=(sum of observations)/number of observation | |||||
standard deviation=(sum of (Xi-Mean)2)/number of observation | |||||
Coefficient of varation= (standard deviation/mean)*100 | |||||
(a). | Mean and standard deviation of each sample given below: | ||||
Mean of sample A = | 6.071 | ||||
Mean of sample B = | 6.414 | ||||
Standard deviation for sample A = | 1.852 | ||||
Standard deviation for sample B = | 1.781 | ||||
(b). | Coefficient of variation for sample A = | 30.5 | % | ||
Coefficient of variation for sample B = | 27.8 | % |