Question

In: Statistics and Probability

3- For this section, we will study the probability distribution for Italy. It is assumed that...

3- For this section, we will study the probability distribution for Italy. It is assumed that the confirmed cases show a normal distribution behavior. Find the mean and the standard deviation.

Consider the period between Feb, 22 and June, 22. This period is considered as the lock down period in Italy. The mean and the standard deviation gives an idea about the period to spread the virus and time required to diminish the strength of the COVID-19
Please I want this question to be answer completely.

Solutions

Expert Solution

As we see, the variable of our interest is the number of confirmed cases of the covid 19. So if X is a random variable representing number of confirmed cases in Italy then X is following Normal distribution with mean m and variance sigma square (s2). Now if population parameter are unknown, then thesecan be estimated from sample of suitable size so as it can best estimate the population parameter. Mean m can be estimated by its unbiased estimator sample mean xm and population standard deviation is estimated by its unbiased estimator S square i.e. sample variance. Xm=Xi /n ,

S2 =(Xi-Xm)^2/n-1

Suppose we divide the data into 2 parts :group contains data on number of confirmed cases before lockdown and another group consists of number of cases post lockdown. Now, say m1 is mean value for group 1 and m2 is mean value for group 2. We can apply testing procedures like z test ir t test to check if there is any significant difference between the 2 means or if there is any effect of lockdown or not. Then, in order to predict when the number of cases wil diminish , we can fit a regression model where dependent variable can be taken as number of confirmed cases and independent variables can be taken as various factors affecting it like immunity of person, healthcare facility ,time etc. The study of standard deviation will give the spread in data, where the cases got peak and how deviated the values are from mean value.

Thanks


Related Solutions

The following require calculating the probability of the specified event based on an assumed probability distribution....
The following require calculating the probability of the specified event based on an assumed probability distribution. Remember to consider whether the event involves discrete or continuous variables. You are measuring height of vegetation in a grassland using a Robel pole and a 5 m. radius. Based on 100 random samples from the grassland, you obtain a mean height of 0.6 m with a standard deviation of 0.04 m2. a) What distribution is the appropriate reference for this problem? b) Ninety...
QUESTION 3: A pharmaceutical company makes tranquilizers. It is assumed that the distribution for the length...
QUESTION 3: A pharmaceutical company makes tranquilizers. It is assumed that the distribution for the length of time they last is approximately normal. Researchers in a hospital used the drug on a random sample of nine patients. The effective period of the tranquilizer for each patient (in hours) was as follows: 2.7, 2.8, 3.0, 2.3, 2.3, 2.2, 2.8, 2.1 and 2.4. a) Find the mean of the sample. b) Find the standard deviation of the sample. c) Find the median...
We learned in this section of our study that Monopoly is not widespread because barriers to...
We learned in this section of our study that Monopoly is not widespread because barriers to entry are seldom completely successful. We also learned that they are unsustainable over a long period of time, because of emerging new technologies. Look at what you can investigate and analyze if such evidence is correct or not. Use your analyses and argue for and against antitrust laws. Do we need antitrust laws or companies and market forces will bring them along and correct...
In this section we will study the problem of gender-wage discrimination. It is often argued that...
In this section we will study the problem of gender-wage discrimination. It is often argued that women are paid less than equally qualified men to do the same job. This is also true in academia. The University of Calgary administrators are trying to determine the gender earnings gap in order to `compensate' women who are underpaid. In the empirical analyses that follow, the following variables are defined as: Y - Log earnings F - female indicator Age - age of...
Suppose that the Treasury bill rate is 6% rather than 3%, as we assumed in Table...
Suppose that the Treasury bill rate is 6% rather than 3%, as we assumed in Table 12.1 but that the expected return on the market is still 10%. Use the betas in that table to answer the following questions. a. Calculate the expected return from Pfizer. (Do not round intermediate calculations. Enter your answer as a percent rounded to 1 decimal place.) b. What is the highest expected return offered by one of these stocks? (Do not round intermediate calculations....
The table below is a discrete probability distribution of study hours for mathematics in a given week.
The table below is a discrete probability distribution of study hours for mathematics in a given week.    Hours (x) 1 2 3 4 5 P(x) 0.16 0.22 ? 0.20 0.14 Find the probability of x=3. Find the mean and the standard deviation of this probability distribution. Find the probability that x is at most 4 hours.
Study the binomial distribution table. Notice that the probability of success on a single trial p...
Study the binomial distribution table. Notice that the probability of success on a single trial p ranges from 0.01 to 0.95. Some binomial distribution tables stop at 0.50 because of the symmetry in the table. Let's look for that symmetry. Consider the section of the table for which n = 5. Look at the numbers in the columns headed by p = 0.30 and p = 0.70. Do you detect any similarities? Consider the following probabilities for a binomial experiment...
1. In Section 8.1 we considered the exact sampling distribution for the prevalence estimator P and...
1. In Section 8.1 we considered the exact sampling distribution for the prevalence estimator P and an approximate sampling distribution based on the normal distribution. Plot the probability function of the exact sampling distribution for P, assuming a sample size of n = 10 and population prevalence of q = 0.5.   Repeat this for q = 0.1, 0.25, 0.75 and 0.9. Repeat part (a) using the probability density function from the approximate normal sampling distribution. Comment on your results from parts...
We have a normal probability distribution for variable x with μ = 24.8 and σ =...
We have a normal probability distribution for variable x with μ = 24.8 and σ = 3.7. For each of the following, make a pencil sketch of the distribution & your finding. Using 5 decimals, find: (a)[1] PDF(x = 30);   [use NORM.DIST(•,•,•,0)] (b)[1] P(x ≤ 27);   [use NORM.DIST(•,•,•,1)] (c)[1] P(x ≥ 21);   [elaborate, then use NORM.DIST(•,•,•,1)] (d)[2] P(22 ≤ x ≤ 26);   [elaborate, then use NORM.DIST(•,•,•,1)] (e)[3] P(20 ≤ x ≤ 28);   [z‐scores, then use NORM.S.DIST(•,1)] (f)[1] x* so that...
We know that based on the Binomial distribution, probability of x successes in n trials when...
We know that based on the Binomial distribution, probability of x successes in n trials when the probability of success is (p) can be calculated by multiplying Combinations of n items x by x, multiplied by the probability of success (p) raised to (x) and multiplied by (1-p) raised to (n-x). 1. If probability of having a child who will study business in college (probability of success) is 0.25, what is the probability of a family with 6 children will...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT