Question

In: Statistics and Probability

A company claims that its new drug is effective is lowering blood pressure. To test this...

A company claims that its new drug is effective is lowering blood pressure. To test this claim, an independent clinic tested the drug on 6 volunteers. Below are the blood pressures before and after taking the new drug.

BP Before Drug

142

130

145

129

138

126

BP After Drug

120

110

140

115

125

110

(a) What tailed test is this? (i.e., RIGHT, LEFT, or TWO-TAILED?)

(b) What is the value of the "Test Statistic"?   

(c) What is the critical value(s)? Use α=0.05.

(d) What is the P-value?

(e) Do you "Reject" or "Fail to Reject" the Null Hypothesis?

(f) Is the company justified in its claim? [Use the Summary Table provided in class]

Solutions

Expert Solution

Answer a)

We are taking difference as Before Drug - After Drug. Since new drug lowers the blood pressure so mean difference should be greater than zero. Thus, it is a RIGHT, tailed test.

Answer b)

The following table is obtained:

The value of the "Test Statistic" is 6.124

Answer c)

The degrees of freedom = n-1 = 6-1 = 5

α = 0.05

The critical t value corresponding to α = 0.05 and df = 5 for a right tailed test is obtained using calculator. Screenshot below:

The critical value is 2.015.

Answer d)

P-value corresponding to Test Statistic t = 6.124 and df = 5 for a right tailed test is obtained using calculator. Screenshot below:

Thus, p-value = 0.0008

Answer e)

Since p-value = 0.0008 < α = 0.05, we reject null hypothesis.

Answer f)

At 0.05 significance level, the company is justified in its claim that its new drug is effective is lowering blood pressure.


Related Solutions

A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d = (blood pressure before taking new drug) − (blood pressure after taking new drug). Use a significance level of α = 0.05 for the test. Assume that the...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Using this data, find the 99% confidence interval for the true difference in blood pressure for each patient after taking the new drug. Assume that the blood pressures are normally distributed for the population of patients both before and...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Using this data, find the 99% confidence interval for the true difference in blood pressure for each patient after taking the new drug. Assume that the blood pressures are normally distributed for the population of patients both before and...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 22 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d=(blood pressure before taking new drug)−(blood pressure after taking new drug). Use a significance level of α=0.01 for the test. Assume that the systolic blood pressure levels are normally...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d=(blood pressure before taking new drug)−(blood pressure after taking new drug). Use a significance level of α=0.01 for the test. Assume that the systolic blood pressure levels are normally...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug shown in the table below. Using this data, find the 95 % confidence interval for the true difference in blood pressure for each patient after taking the new drug. Assume that the blood pressures are normally distributed for the population of patients both before and...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d=(blood pressure before taking new drug)−(blood pressure after taking new drug). Use a significance level of α=0.05 for the test. Assume that the systolic blood pressure levels are normally...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d=(blood pressure before taking new drug)−(blood pressure after taking new drug)d=(blood pressure before taking new drug)−(blood pressure after taking new drug). Use a significance level of α=0.01 for the...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 2 hours after taking the drug are shown in the table below. Is there enough evidence to support the company's claim? Let d=(blood pressure before taking new drug)−(blood pressure after taking new drug). Use a significance level of α=0.05 for the test. Assume that the systolic blood pressure levels are normally...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure...
A pharmaceutical company claims that its new drug reduces systolic blood pressure. The systolic blood pressure (in millimeters of mercury) for nine patients before taking the new drug and 22 hours after taking the drug are shown in the table below. Using this data, find the 99%99% confidence interval for the true difference in blood pressure for each patient after taking the new drug. Assume that the blood pressures are normally distributed for the population of patients both before and...
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT