In: Finance
Compute the IRR, NPV, PI, and payback period for the following two projects. Assume the required return is 12%.
Cashflow for each year
Project A : Year 0= -2500 Year 1=900 Yaer 2=800 Year 3=1600 Year 4=100 Yaer 5=50 Year 6= 300
Project B Year 0 =-2500 Year 1=50 Year2= 600 Year 3=150 Year 4=900 Year 5= 500 Year 6=2500
NPV:
NPV is calculated by discounting the cashflows
PV = C/(1+r)^n
C - Cashflow
r - Discount rate
n - years to the cashflow
Project A:
NPV = -2500 + 900/(1+0.12)^1 + 800/(1+0.12)^2 + 1600/(1+0.12)^3 + 100/(1+0.12)^4 + 50/(1+0.12)^5 + 300/(1+0.12)^6 = 324.09
Project B:
NPV = -2500 + 50/(1+0.12)^1 + 600/(1+0.12)^2 + 150/(1+0.12)^3 + 900/(1+0.12)^4 + 500/(1+0.12)^5 + 2500/(1+0.12)^6 = $251.98
IRR:
IRR is the rate at which NPV = 0
Project A:
NPV = -2500 + 900/(1+IRR)^1 + 800/(1+IRR)^2 + 1600/(1+IRR)^3 + 100/(1+IRR)^4 + 50/(1+IRR)^5 + 300/(1+IRR)^6 = 0
By trail and error, IRR = 17.91%
Project B:
NPV = -2500 + 50/(1+IRR)^1 + 600/(1+IRR)^2 + 150/(1+IRR)^3 + 900/(1+IRR)^4 + 500/(1+IRR)^5 + 2500/(1+IRR)^6 = 0
By trail and error, IRR = 14.38%
PI:
Profitability Index = (NPV + Initial Investment) / Initial investment
Project A = (324.09 + 2500)/2500 = 1.13
Project B = (251.98 + 2500)/2500 = 1.10
Payback period :
Payback period = A + B/C
Where,
A = Last period with a negative cumulative cash flow;
B = Absolute value of cash flow at the end of the period A;
C = cash flow during the period after A.
Project A:
Year | Cashflow (A) | Cummulative |
0 | -2500 | -2500 |
1 | 900 | -1600 |
2 | 800 | -800 |
3 | 1600 | 800 |
4 | 100 | 900 |
5 | 50 | 950 |
6 | 300 | 1250 |
Payback period = 2 + 800/1600 = 2.5 years
Project B:
Year | Cashflow (A) | Cummulative |
0 | -2500 | -2500 |
1 | 50 | -2450 |
2 | 600 | -1850 |
3 | 150 | -1700 |
4 | 900 | -800 |
5 | 500 | -300 |
6 | 2500 | 2200 |
Payback period = 5 + 300/2500 = 5.12 years